Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Weighted inequalities for Riemann-Liouville fractional integrals of order one and greater


Authors: F. J. Martín-Reyes and E. Sawyer
Journal: Proc. Amer. Math. Soc. 106 (1989), 727-733
MSC: Primary 26A33; Secondary 26D10, 42B25
MathSciNet review: 965246
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A simple characterization is given for two-weight norm inequalities for generalized Hardy operators $ {T_\varphi }f(x) = \smallint _0^x\varphi (\tfrac{t}{x})f(t)dt$, where $ \varphi :(0,1) \to (0,\infty )$ is nonincreasing and satisfies $ \varphi (ab) \leq D[\varphi (a) + \varphi (b)]$ for $ 0 < a,b < 1$. Included in particular are the Riemann-Liouville fractional integrals.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A33, 26D10, 42B25

Retrieve articles in all journals with MSC: 26A33, 26D10, 42B25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0965246-8
Article copyright: © Copyright 1989 American Mathematical Society