Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Weighted inequalities for Riemann-Liouville fractional integrals of order one and greater


Authors: F. J. Martín-Reyes and E. Sawyer
Journal: Proc. Amer. Math. Soc. 106 (1989), 727-733
MSC: Primary 26A33; Secondary 26D10, 42B25
DOI: https://doi.org/10.1090/S0002-9939-1989-0965246-8
MathSciNet review: 965246
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A simple characterization is given for two-weight norm inequalities for generalized Hardy operators $ {T_\varphi }f(x) = \smallint _0^x\varphi (\tfrac{t}{x})f(t)dt$, where $ \varphi :(0,1) \to (0,\infty )$ is nonincreasing and satisfies $ \varphi (ab) \leq D[\varphi (a) + \varphi (b)]$ for $ 0 < a,b < 1$. Included in particular are the Riemann-Liouville fractional integrals.


References [Enhancements On Off] (What's this?)

  • [AM] K. Andersen and B. Muckenhoupt, Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions, Studia Math. 72 (1982), 9-26. MR 665888 (83k:42018)
  • [A] M. Artola, untitled and unpublished manuscript.
  • [B] J. S. Bradley, Hardy inequalities with mixed norms, Canad. Math. Bull. 21 (1978), 405-408. MR 523580 (80a:26005)
  • [M] B. Muckenhoupt, Hardy's inequality with weights, Studia Math. 34 (1972), 31-38. MR 0311856 (47:418)
  • [S] Stepano, Two-weighed estimates or Riemann-Liouvile integr , Ceskoslovenska Akademĭe Vĭd 39 (1988), 1-28.
  • [Ta] G. Talenti, Osservazioni sopra una classe di disuguaglianze, Rend. Sem. Mat. Fis. Milano 39 (1969), 171-185. MR 0280661 (43:6380)
  • [To] G. Tomaselli, A class of inequalities, Boll. Un. Mat. Ital. 2 (1969), 622-631. MR 0255751 (41:411)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A33, 26D10, 42B25

Retrieve articles in all journals with MSC: 26A33, 26D10, 42B25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0965246-8
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society