Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Isometries of spaces of weak $ *$ continuous functions


Authors: Michael Cambern and Krzysztof Jarosz
Journal: Proc. Amer. Math. Soc. 106 (1989), 707-712
MSC: Primary 46E40; Secondary 46B20
DOI: https://doi.org/10.1090/S0002-9939-1989-0968623-4
MathSciNet review: 968623
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If $ X$ is a compact Hausdorff space and $ {E^*}$ a Banach dual, we denote by $ C(X,({E^*},{\sigma ^*}))$ the Banach space of continuous functions from $ X$ to $ {E^*}$ when the latter space is given its weak * topology. It is shown that if $ E_1^*,E_2^*$ have trivial centralizers and satisfy a topological condition introduced by Namioka and Phelps, then, given an isometry $ T$ mapping $ C(X_1^*,({E_1},{\sigma ^*}))$ onto $ C({X_2},(E_2^*,{\sigma ^*}))$ and given $ F \in C({X_1},(E_1^*,{\sigma ^*}))$, there exists a dense $ {G_\delta }$ in $ {X_2}$ on which

$\displaystyle (*)\quad (TF)(x) = U(x)F \circ \Phi (x),$

where $ \Phi $ is a homeomorphism of $ {X_2}$ onto $ {X_1}$ and $ U( \cdot )$ an operator-valued function independent of $ F$. If the $ E_i^*$ are separable then the $ U(x)$ are surjective isometries and $ x \to U(x)$ is continuous. When the $ {X_i}$ are metric the representation (*) holds on all of $ {X_2}$.

References [Enhancements On Off] (What's this?)

  • [1] E. Behrends, $ M$-structure and the Banach-Stone theorem, Lecture Notes in Mathematics 736, Springer-Verlag, Berlin-Heidelberg-New York, 1979. MR 547509 (81b:46002)
  • [2] -, On the geometry of spaces of $ {C_0}K$-valued operators, Studia Math. 90 (1988), 135-151. MR 954168 (89k:46006)
  • [3] M. Cambern and P. Greim, Mappings of continuous functions on hyperstonean spaces, Acta Univ. Carolinae, Math. Phys. 28 (1987), 31-40. MR 932737 (89f:46081)
  • [4] N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
  • [5] R. Engelking, General topology, Monografie Matematyczne, Polish Scientific Publishers, Warszawa, 1977. MR 0500780 (58:18316b)
  • [6] M. Jerison, The space of bounded maps into a Banach space, Ann. of Math. (2) 52 (1950), 309-327. MR 0036942 (12:188c)
  • [7] J. L. Kelley, General topology, Van Nostrand, Princeton, N. J., 1955. MR 0070144 (16:1136c)
  • [8] I. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974), 515-531. MR 0370466 (51:6693)
  • [9] I. Namioka and R. R. Phelps, Banach spaces which are Asplund spaces, Duke Math. J. 42 (1975), 735-750. MR 0390721 (52:11544)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E40, 46B20

Retrieve articles in all journals with MSC: 46E40, 46B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0968623-4
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society