Isometries of spaces of weak continuous functions

Authors:
Michael Cambern and Krzysztof Jarosz

Journal:
Proc. Amer. Math. Soc. **106** (1989), 707-712

MSC:
Primary 46E40; Secondary 46B20

DOI:
https://doi.org/10.1090/S0002-9939-1989-0968623-4

MathSciNet review:
968623

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If is a compact Hausdorff space and a Banach dual, we denote by the Banach space of continuous functions from to when the latter space is given its weak * topology. It is shown that if have trivial centralizers and satisfy a topological condition introduced by Namioka and Phelps, then, given an isometry mapping onto and given , there exists a dense in on which

**[1]**E. Behrends,*-structure and the Banach-Stone theorem*, Lecture Notes in Mathematics 736, Springer-Verlag, Berlin-Heidelberg-New York, 1979. MR**547509 (81b:46002)****[2]**-,*On the geometry of spaces of**-valued operators*, Studia Math. 90 (1988), 135-151. MR**954168 (89k:46006)****[3]**M. Cambern and P. Greim,*Mappings of continuous functions on hyperstonean spaces*, Acta Univ. Carolinae, Math. Phys.**28**(1987), 31-40. MR**932737 (89f:46081)****[4]**N. Dunford and J. T. Schwartz,*Linear operators, Part I*, Interscience, New York, 1958.**[5]**R. Engelking,*General topology*, Monografie Matematyczne, Polish Scientific Publishers, Warszawa, 1977. MR**0500780 (58:18316b)****[6]**M. Jerison,*The space of bounded maps into a Banach space*, Ann. of Math. (2)**52**(1950), 309-327. MR**0036942 (12:188c)****[7]**J. L. Kelley,*General topology*, Van Nostrand, Princeton, N. J., 1955. MR**0070144 (16:1136c)****[8]**I. Namioka,*Separate continuity and joint continuity*, Pacific J. Math.**51**(1974), 515-531. MR**0370466 (51:6693)****[9]**I. Namioka and R. R. Phelps,*Banach spaces which are Asplund spaces*, Duke Math. J.**42**(1975), 735-750. MR**0390721 (52:11544)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46E40,
46B20

Retrieve articles in all journals with MSC: 46E40, 46B20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0968623-4

Article copyright:
© Copyright 1989
American Mathematical Society