Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Mosco convergence and the Kadec property


Authors: Jonathan M. Borwein and Simon Fitzpatrick
Journal: Proc. Amer. Math. Soc. 106 (1989), 843-851
MSC: Primary 46B20; Secondary 52A05, 54C60
DOI: https://doi.org/10.1090/S0002-9939-1989-0969313-4
MathSciNet review: 969313
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the relationship between Wijsman convergence and Mosco convergence for sequences of convex sets. Our central result is that Mosco convergence and Wijsman convergence coincide for sequences of convex sets if and only if the underlying space is reflexive with the dual norm having the Kadec property.


References [Enhancements On Off] (What's this?)

  • [At] H. Attouch, Variational convergence for functions and operators, Pitman, Boston, 1984. MR 773850 (86f:49002)
  • [Au] J. P. Aubin, Applied abstract analysis, Wiley, New York, 1977. MR 470034 (81e:54001)
  • [Be] G. Beer, Convergence of continuous linear functionals and their level sets, Arch. Math. (in press).
  • [Bo-Fi] J. M. Borwein and S. P. Fitzpatrick, Existence of nearest points in Banach spaces, Canadian Journal of Mathematics (in press).
  • [Da] M. M. Day, Normed linear spaces, third edition, Springer-Verlag, New York, 1973. MR 0344849 (49:9588)
  • [GGS] J. R. Giles, D. A. Gregory and B. Sims, Geometrical implications of upper semicontinuity of the duality mapping on a Banach space, Pacific J. Math. 79 (1978), 99-109. MR 526669 (80b:46025)
  • [Ho] R. B. Holmes, A course on optimization and best approximation, Lecture Notes in Mathematics, no. 257, Springer-Verlag, New York, 1972. MR 0420367 (54:8381)
  • [Ko] S. V. Konjagin, On approximation properties of closed sets in Banach spaces and the characterization of strongly convex spaces, Soviet Math. Dokl. 21 (1980), 418-422. MR 565493 (81b:46022)
  • [La] K.-S. Lau, Almost Chebychev subsets in reflexive Banach spaces, Indiana Univ. Math. J. 27 (1978), 791-795. MR 0510772 (58:23286)
  • [Mo1] U. Mosco, Convergence of convex sets and of solutions of variational inequalities, Adv. in Math. 3 (1969), 510-585. MR 0298508 (45:7560)
  • [Mo2] -, "On the continuity of the Young-Fenchel transform," J. Math Anal. Appl. 35 (1971), 518-535. MR 0283586 (44:817)
  • [Sa-We] G. Salinetti and R. Wets, Convergence of convex sets in finite dimensions, SIAM Rev. 21 (1979), 18-33. MR 516381 (80h:52007)
  • [So] Y. Sonntag, Convergence au sens de Mosco; théorie et applications à l'approximation des solutions d'inéquations, Thèse d'État. Université de Provence, Marseille, 1982.
  • [Ts] M. Tsukada, Convergence of best approximations in a smooth Banach space, J. Approx. Theory 40 (1984), 301-309. MR 740641 (86a:41034)
  • [Wi] R. Wijsman, Convergence of sequences of convex sets, cones, and functions, II, Trans. Amer. Math. Soc. 123 (1966), 32-45. MR 0196599 (33:4786)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B20, 52A05, 54C60

Retrieve articles in all journals with MSC: 46B20, 52A05, 54C60


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0969313-4
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society