Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the Popov-Pommerening conjecture for groups of type $ A\sb n$


Author: Lin Tan
Journal: Proc. Amer. Math. Soc. 106 (1989), 611-616
MSC: Primary 14L30; Secondary 14D25
DOI: https://doi.org/10.1090/S0002-9939-1989-0969528-5
MathSciNet review: 969528
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The present paper gives an affirmative answer to the Popov-Pommerening conjecture in the case where the reductive group $ G$ in the conjecture is of type $ {A_n}$ with $ n \leq 4$ , and provides a subgroup $ H$ of $ G{L_5}(k)$ such that the algebra $ {A^H}$ is finitely generated, but is not spanned by the invariant standard bitableaux.


References [Enhancements On Off] (What's this?)

  • [G$ _{1}$] F. Grosshans, Observable groups and Hilbert's fourteenth problem, Amer. J. Math. 95 (1973), 229-253. MR 0325628 (48:3975)
  • [G$ _{2}$] -, The invariants of unipotent radicals of parabolic subgroups, Invent. Math. 73 (1983), 1-9. MR 707345 (85c:14029)
  • [G$ _{3}$] -, Hilbert's fourteenth problem for non-reductive groups, Math. Z. 193 (1986), 95-103. MR 852912 (87k:14053)
  • [H] W. Haboush, Reductive groups are geometrically reductive, Ann. of Math. 102 (1975), 67-84. MR 0382294 (52:3179)
  • [HM] G. Hochschild and G. D. Mostow, Unipotent groups in invariant theory, Proc. Nat. Acad. Sci. U.S.A. 70 (1973), 646-648. MR 0320174 (47:8713)
  • [M] D. Mumford, Geometric invariant theory, Springer-Verlag, Berlin, 1965. MR 0214602 (35:5451)
  • [N$ _{1}$] M. Nagata, Invariants of a group in an affine ring, J. Math. Kyoto Univ. 3 (1964), 369-377. MR 0179268 (31:3516)
  • [N$ _{2}$] -, Lectures on the fourteenth problem of Hilbert, Tata Inst. Fund. Res. (1965). MR 0215828 (35:6663)
  • [Po$ _{1}$] K. Pommerening, Invarianten unipotenter Gruppen, Math. Z. 176 (1981), 359-374. MR 610216 (82i:14029)
  • [Po$ _{2}$] -, Ordered sets with the standardizing property and straightening laws for algebras of invariants, Adv. in Math. 63 (1987), 271-290. MR 877787 (88e:14059)
  • [Po$ _{3}$] -, Invariants of unipotent groups--a survey, In: Invariant Theory, Lecture Notes in Math, 1278, Springer-Verlag, Berlin, 1987, pp. 8-17.
  • [Pp] V. L. Popov, Hilbert's theorem on invariants, Soviet Math. Dokl. 20 (1979), 1318-1322.
  • [Se] C. S. Seshadri, On a theorem of Weitzenböck in invariant theory, J. Math. Kyoto Univ. 1 (1961), 403-409. MR 0144914 (26:2454)
  • [St] R. Steinberg, Conjugacy classes in algebraic groups, Lecture Notes in Math. 366, Springer-Verlag, Berlin, 1974. MR 0352279 (50:4766)
  • [T$ _{1}$] L. Tan, The invariant theory of unipotent subgroups of reductive algebraic groups, Diss. UCLA, 1986.
  • [T$ _{2}$] -, Some recent developments in the Popov-Pommerening Conjecture, Proceedings of the Conference on Group Actions held in Montréal, August 1-8, 1988 (to appear).
  • [W] R. Weitzenböck, Über die Invarianten von linearen Gruppen, Acta Math. 58 (1932), 231-293. MR 1555349

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14L30, 14D25

Retrieve articles in all journals with MSC: 14L30, 14D25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0969528-5
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society