On metric spaces with uniform normal structure

Author:
M. A. Khamsi

Journal:
Proc. Amer. Math. Soc. **106** (1989), 723-726

MSC:
Primary 54H25; Secondary 47H10, 52A01

MathSciNet review:
972234

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this work, we prove that metric spaces with uniform normal structure have a kind of intersection property, which is equivalent to reflexivity in Banach spaces.

**[1]**N. Dunford and J. T. Schwartz,*Linear operator*, Part 1, Interscience, New York, 1958.**[2]**A. A. Gillespie and B. B. Williams,*Fixed point theorem for nonexpansive mappings on Banach spaces with uniformly normal structure*, Applicable Anal.**9**(1979), no. 2, 121–124. MR**539537**, 10.1080/00036817908839259**[3]**Yōichi Kijima and Wataru Takahashi,*A fixed point theorem for nonexpansive mappings in metric space*, Kōdai Math. Sem. Rep.**21**(1969), 326–330. MR**0263065****[4]**W. A. Kirk,*A fixed point theorem for mappings which do not increase distances*, Amer. Math. Monthly**72**(1965), 1004–1006. MR**0189009****[5]**W. A. Kirk,*Nonexpansive mappings in metric and Banach spaces*, Rend. Sem. Mat. Fis. Milano**51**(1981), 133–144 (1983) (English, with Italian summary). MR**708039**, 10.1007/BF02924816**[6]**E. Maluta,*Uniformly normal structure and related coefficients*, Pacific J. Math.**111**(1984), no. 2, 357–369. MR**734861****[7]**D. P. Mil'man and V. D. Mil'man,*The geometry of nested families with empty intersection-structure of the unit ball of a nonreflexive space*, Amer. Math. Soc. Trans. (2)**85**(1966), 233-243.**[8]**Jean-Paul Penot,*Fixed point theorems without convexity*, Bull. Soc. Math. France Mém.**60**(1979), 129–152. Analyse non convexe (Proc. Colloq., Pau, 1977). MR**562261**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54H25,
47H10,
52A01

Retrieve articles in all journals with MSC: 54H25, 47H10, 52A01

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0972234-4

Keywords:
Nonexpansive mappings,
fixed point property,
uniform normal structure

Article copyright:
© Copyright 1989
American Mathematical Society