Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A short proof of the Grigorchuk-Cohen cogrowth theorem


Author: Ryszard Szwarc
Journal: Proc. Amer. Math. Soc. 106 (1989), 663-665
MSC: Primary 43A07; Secondary 20E99, 20F05, 22D05
DOI: https://doi.org/10.1090/S0002-9939-1989-0975660-2
MathSciNet review: 975660
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a group generated by $ {g_1}, \ldots ,{g_r}$. There are exactly $ 2r{(2r - 1)^{n - 1}}$ reduced words in $ {g_1}, \ldots ,{g_r}$ of length $ n$. Part of them, say $ {\gamma _n}$ represents identity element of $ G$. Let $ \gamma = \lim \sup \gamma _n^{1/n}$. We give a short proof of the theorem of Grigorchuk and Cohen which states that $ G$ is amenable if and only if $ \gamma = 2r - 12$. Moreover we derive some new properties of the generating function $ \sum {{\gamma _n}{z^n}} $.


References [Enhancements On Off] (What's this?)

  • [1] J. M. Cohen, Cogrowth and amenability of discrete groups, J. Functional Analysis 48 (3) (1982), 301-309. MR 678175 (85e:43004)
  • [2] R. I. Grigorchuk, Symmetrical random walks on discrete groups, in "Multicomponent Random Systems" ed. R. L. Dobrushin, Ya. G. Sinai, pp. 132-152, Nauka, Moscow 1978 (English translation: Advances in Probability and Related Topics, Vol. 6, pp. 285-325, Marcel Dekker 1980. MR 599539 (83k:60016)
  • [3] H. Kesten, Full Banach mean values on countable groups, Math. Scand. 7 (1959), 149-156. MR 0112053 (22:2911)
  • [4] T. Pytlik, Radial functions on free groups and a decomposition of the regular representation into irreducible components, J. Reine Angew. Math. 326 (1981), 124-135. MR 622348 (84a:22017)
  • [5] R. Szwarc, An analytic series of irreducible representations of the free group, Ann. Inst. Fourier (Grenoble) 38 (1) (1988), 87-110. MR 949000 (89j:22023)
  • [6] S. Wagon, Elementary problems E 3226, Amer. Math. Monthly 94 (8) (1987), 786-787. MR 1541174

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A07, 20E99, 20F05, 22D05

Retrieve articles in all journals with MSC: 43A07, 20E99, 20F05, 22D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0975660-2
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society