A WEAK-TYPE ESTIMATE
FOR FOURIER-BESSEL MULTIPLIERS

JOHN GOSSelin AND KRZYSZTOF STEMPAK

(Communication by Richard R. Goldberg)

Abstract. We apply Hörmander's technique to prove a weak-type $(1,1)$ estimate for multiplier operators with respect to the Fourier-Bessel transform. This improves a result in [4, 5].

1. Introduction

Consider the measure space $(\mathbb{R}^+, d\mu(x))$ where $d\mu(x) = x^r dx$, r being a fixed positive real number. By $L^p(\mu)$, $1 \leq p \leq \infty$, we denote the corresponding Lebesgue spaces equipped with the norms

$$||f||_p = \left(\int_0^\infty |f|^p d\mu \right)^{1/p}.$$

Let $\hat{f}(\lambda)$, $\lambda \geq 0$, denote the Fourier-Bessel transform of the function $f \in L^1(\mu)$. Explicitly this means

$$\hat{f}(\lambda) = \int_0^\infty f(x) \phi_\lambda(x) d\mu(x),$$

where $\phi_\lambda(x) = a(r)(\lambda x)^{-\frac{r-1}{2}} J_{\frac{r-1}{2}}(\lambda x)$, $x \geq 0$, $a(r) = 2^{\frac{r-1}{2}} \Gamma((r+1)/2)$, and J_α denotes the Bessel function of the first kind of order α. The functions ϕ_λ, $\lambda \geq 0$, are eigenfunctions of the second order Bessel differential operator

$$L = - \left(\frac{d}{dx^2} + \frac{r}{x} \frac{d}{dx} \right).$$

More precisely, we have

$$(1.1) \quad L \phi_\lambda = \lambda^2 \phi_\lambda.$$

If $r = n - 1$, $n \geq 2$ being an integer, then

$$\hat{f}(||\vec{\lambda}||) = \frac{1}{2\pi} \left(\frac{n}{2} \right)^{\frac{n-2}{2}} \left(\frac{n}{2} \right) \int_{\mathbb{R}^n} f(||\vec{x}||) \exp(-i\langle \vec{\lambda}, \vec{x} \rangle) d\vec{x}$$

Received by the editors May 22, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 42B15; Secondary 42C15.

Key words and phrases. Fourier-Bessel transform, multipliers, generalized convolution.
for \(\vec{\lambda} \in \mathbb{R}^n \). Thus \(\hat{f} \) gives the radial part of the Fourier transform of the radial function \(f'(|\vec{x}|) \) on \(\mathbb{R}^n \) (observe that \(f \in L^1(\mu) \) if and only if \(f'(|\vec{x}|) \in L^1(\mathbb{R}^n, d\vec{x}) \) where \(\| \cdot \| \) denotes the Euclidean norm and \(d\vec{x} \) is Lebesgue measure on \(\mathbb{R}^n \)). In the case \(r = n - 1 \), one can easily see that for the Fourier-Bessel transform, both the inversion theorem and Plancherel's formula hold. In particular we have

\[
\hat{f}(\lambda) = a(r)^{-1} \int_0^\infty \hat{f}(\lambda) \phi_\lambda(x) d\mu(\lambda)
\]

almost everywhere on \(\mathbb{R}^+ \) providing \(f \in L^1(\mu) \) and \(\hat{f} \in L^1(\mu) \). For \(f \in L^2(\mu) \) we have

\[
\int_0^\infty |f(x)|^2 d\mu(x) = a(r)^{-2} \int_0^\infty |\hat{f}(\lambda)|^2 d\mu(\lambda).
\]

The above results for general \(r > 0 \) can be established via a summability argument similar to that in the case of the ordinary Fourier transform. The key idea is that the Gaussian is invariant under the Fourier-Bessel transform when appropriately normalized. We also note that in the case \(r = n - 1 \), the operator \(-L \) is the radial part of the ordinary Laplace operator on \(\mathbb{R}^n \). Finally, we mention that \(C \) will be used to denote a constant which may vary from line to line.

For any bounded function \(m \) on \((0, \infty) \) we define the multiplier operator \(T_m \) by \((T_m f)^\sim = m \hat{f} \). The aim of this note is to prove the following theorem which is a generalization of the celebrated Hörmander-Mihlin multiplier theorem for the Fourier transform (see [3]).

Theorem 1.1. Let \(k \) denote the least even integer > \((r + 1)/2 \) and let \(m \in C^k(0, \infty) \) be a bounded function which satisfies

\[
(1.2) \quad \left(\int_{R/2}^R |m^{(s)}(\lambda)|^2 d\mu(\lambda) \right)^{1/2} \leq BR^{(r+1)/2-s},
\]

where \(B \) is a constant independent of \(R > 0 \) and \(s = 0, 1, \ldots, k \). Then the operator \(T_m \) is of weak-type \((1, 1) \), i.e.

\[
(1.3) \quad \mu(\{x \in (0, \infty) : |T_m f(x)| > \alpha\}) \leq C \alpha^{-1} \|f\|_1
\]

where \(C \) is independent of \(\alpha > 0 \) and \(f \in L^1(\mu) \).

Using the interpolation theorem of Marcinkiewicz and duality we also obtain the following

Corollary 1.2. Let \(m \) satisfy the assumptions of the Theorem 1.1. Then for \(1 < p < \infty \), \(T_m \) is of strong type \((p, p) \), i.e. \(\|T_m f\|_p \leq C_p \|f\|_p \).

Remark. The result of the above corollary was obtained previously by the second author by means of a Littlewood-Paley theory for the Fourier-Bessel transform (see [4, 5]). The proof of the above theorem is more direct and is based upon a generalized convolution structure which is natural for the Fourier-Bessel
transform. The novel ingredient of our proof is a Bernstein-type inequality for this convolution structure. We establish this inequality in the following section.

2. A Bernstein-type inequality for generalized translations

Since Hirschman and Bochner considered the Banach algebra of radial functions over thirty years ago, it has been known that $L^1(\mu)$ admits a commutative Banach algebra structure for which the Fourier-Bessel transform becomes the Gelfand transform (see [4 and 5] for details and for other references). In order to describe this structure we define the generalized translation operator T^y, $y \geq 0$, for suitable functions f, by

\begin{equation}
T^y f(x) = \int_0^\infty f((x, y) \theta) d\nu(\theta)
\end{equation}

where $(x, y) \theta = (x^2 + y^2 - 2xy \cos \theta)^{1/2}$, $0 \leq \theta \leq \pi$, $x, y \geq 0$ and $d\nu(\theta)$ denotes the probability measure $b(r)(\sin \theta)^{-1} d\theta$ on $[0, \pi]$. Here

$$b(r) = \pi^{-1/2} \Gamma((r + 1)/2) \Gamma(r/2)^{-1}.$$

The operator T^y can also be described by

\begin{equation}
T^y f(x) = \int_{|x-y|}^{x+y} f(z) dW_{x,y}(z)
\end{equation}

where the probability measure $dW_{x,y}(z)$ is supported on $[|x - y|, x + y]$ and given by

$$dW_{x,y}(z) = c(r) \Delta(x, y, z)^{r-2} (xyz)^{-1} d\mu(z),$$

where $c(r) = 2r^{-2} \Gamma((r + 1)/2) \Gamma(r/2)^{-1} \pi^{-1/2}$. In the above formula $x, y, z \geq 0$, $|x - y| \leq z \leq x + y$, and $\Delta(x, y, z)$ denotes the area of a triangle with sides x, y, z. It is quite straightforward to go from (2.2) to (2.1) by a change of variables. Next, it is easy to check that the measure $dW_{x,y}(z) d\mu(y)$ is symmetric with respect to y and z, i.e. $dW_{x,y}(z) d\mu(y) = dW_{x,z}(y) d\mu(z)$. From this it follows that the operators T^y, $y \geq 0$, are selfadjoint on $L^2(\mu)$ and moreover that

\begin{equation}
\int_0^\infty f(x) T^y g(x) d\mu(x) = \int_0^\infty T^y f(x) g(x) d\mu(x),
\end{equation}

for any reasonable pair of functions f and g, e.g. if $f \in L^\infty(\mu)$ and $g \in L^1(\mu)$. It is also easy to see that generalized translations are submarkovian contractions, i.e. $0 \leq f \leq 1$ implies $0 \leq T^y f \leq 1$ and $\|T^y f\|_p \leq \|f\|_p$, for $1 \leq p \leq \infty$. We now define the generalized convolution $f * g$ for $f, g \in L^1(\mu)$ by

\begin{equation}
f * g(x) = \int_0^\infty f(y) T^y g(x) d\mu(y).
\end{equation}
It is well known that the following identity involving the functions ϕ_λ and the generalized translations T_γ is valid

\begin{equation}
T_\gamma \phi_\lambda(x) = \phi_\lambda(x)\phi_\gamma(y)
\end{equation}

(see [4, 5] for references). Using (2.3) and (2.5) one can easily verify that for any $f, g \in L^1(\mu)$ we have $(f \ast g)\gamma = \hat{f} \hat{g}$ and $(T_\gamma f)\gamma = \phi_\gamma(y) \hat{f}(\lambda)$. Therefore

\begin{equation}
T_\gamma g \ast f = g \ast T_\gamma f.
\end{equation}

It is also easy to check that with the pseudodistance $\rho(x, y) = |x - y|$, the space $(\mathbb{R}^+, \mu, \rho)$ becomes a space of homogeneous type in the sense of [1]. Finally, from (2.2) it is immediate that $T_\gamma f(x) = 0$ if f vanishes on the interval $[x - y, x + y]$ and that $|T_\gamma f(x)| \leq T_\gamma(|f|)(x)$ for $x, y \geq 0$.

In the proof of the Hörmander-Mihlin theorem (cf. [3]), Bernstein's inequality plays an important role. We now prove a Bernstein-type inequality for the generalized translations T_γ, $\gamma \geq 0$.

Theorem 2.1. Suppose $h \in L^1(\mu)$ is a differentiable function on \mathbb{R}^+ with $h'(x) \in L^1(\mu)$. Then

\begin{equation}
\|T_\gamma h - T_{\gamma'} h\|_1 \leq \|h'\|_1 |y_1 - y_2|.
\end{equation}

Proof. Using (2.1) we write

\begin{equation}
\|T_\gamma h - T_{\gamma'} h\|_1 = \int_0^\infty \int_0^\pi \left| h((x,y_1)\theta) - h((x,y_2)\theta) \right| d\nu(\theta) d\mu(x)
\end{equation}

For fixed $x, y_1, y_2 \geq 0$ and $\theta \in (0, \pi)$, let

\begin{equation}
\Phi(s) = \Phi_{x, y_1, y_2}(s) = (x, y_2 + s(y_1 - y_2)) \theta, \quad s \in [0, 1].
\end{equation}

Then

\begin{equation}
\left| \frac{d}{ds} \Phi(s) \right| \leq |y_1 - y_2|
\end{equation}

independently of x, y_1, y_2, θ. To verify (2.9) consider the vectors $X = (x, 0)$, $Y_1 = (y, \cos \theta, y, \sin \theta)$, $i = 1, 2$, in \mathbb{R}^2. Letting $\|\cdot\|$ denote the Euclidean norm on \mathbb{R}^2 it is easy to see that

\begin{equation}
(x, y_2 + s(y_1 - y_2))\theta = \|Y_2 + s(Y_1 - Y_2) - X\| \equiv \|\xi_z\|.
\end{equation}

Since $\nabla(\|\cdot\|)(\xi) = \xi / \|\xi\|$ for $\xi \in \mathbb{R}^2$, Schwarz' inequality implies

\begin{equation}
\left| \frac{d}{ds} \Phi(s) \right| \leq \|Y_1 - Y_2\| = |y_1 - y_2|.
\end{equation}
Here \(\langle \cdot, \cdot \rangle \) denotes the ordinary Euclidean inner product on \(\mathbb{R}^2 \). This gives (2.9). Now, using (2.9) and the contraction property of generalized translations, we have from (2.8)

\[
\|T^{y_1}h - T^{y_2}h\|_1 \leq |y_1 - y_2| \int_0^1 \int_0^\infty \int_0^\pi |h'((x, y_2 + s(y_1 - y_2))_0)| d\nu(\theta) d\mu(x) ds
\]

\[
\leq |y_1 - y_2| \int_0^1 \|T^{y_1+\delta(y_1-y_2)}(|h'|)\|_1 ds
\]

\[
\leq |y_1 - y_2||h'|_1.
\]

This completes the proof of Theorem 2.1.

As in the case of the Fourier transform (cf. [2]) Theorem 2.1 implies the following corollary. We include its proof for the sake of completeness.

Corollary 2.2. There exists a constant \(C > 0 \) such that for any \(\lambda > 0 \) and any function \(f \in L^1(\mu) \) with \(\text{supp} \hat{f} \subset (0, \lambda) \)

\[
(2.10) \|T^{y_1}f - T^{y_2}f\|_1 \leq C\lambda |y_1 - y_2||f||_1.
\]

Proof. Choose \(\chi \in C^\infty(\mathbb{R}^+) \) such that \(\chi(\lambda) = 1 \) for \(0 < \lambda \leq 1 \) and \(\chi(\lambda) = 0 \) for \(\lambda \geq 2. \) Then by the inversion theorem we have \(\chi = \hat{h} \) for some \(C^\infty \) function \(h \in L^1(\mu) \) with \(h' \in L^1(\mu) \). Let \(h_\varepsilon(x) = \varepsilon h(\varepsilon x) \) for \(\varepsilon > 0 \). Then \(h_\varepsilon(\lambda) = \chi(\lambda/\varepsilon) = 1 \) for \(0 < \lambda \leq \varepsilon \). Thus, for \(\varepsilon = \lambda \) we have

\[
T^{y_1}f - T^{y_2}f = h_\varepsilon \ast (T^{y_1}f - T^{y_2}f) = (T^{y_1}h_\varepsilon - T^{y_2}h_\varepsilon) \ast f
\]

and therefore by (2.7) we have

\[
\|T^{y_1}f - T^{y_2}f\|_1 \leq \|T^{y_1}h_\varepsilon - T^{y_2}h_\varepsilon\|_1 \|f\|_1 = \|T^{y_1}h - T^{y_2}h\|_1 \|f\|_1
\]

\[
\leq \lambda |y_1 - y_2||h'|_1 \|f\|_1.
\]

This establishes (2.10) with \(C = ||h'||_1 \) and completes the proof of the corollary.

3. Proof of Theorem 1.1

We closely follow the original proof of Hörmander (see [3, pp. 121–123]). Choose a function \(\psi \in C_0^\infty(\mathbb{R}^+) \) with support in \((1/2, 2)\) such that \(\sum_{-\infty}^\infty \psi(2^{-j}\lambda) = 1, \lambda > 0, \) and let

\[
m_j(\lambda) = m(\lambda) \psi(2^{-j}\lambda) \equiv m(\lambda) \psi_j(\lambda)
\]

and

\[
k_j(x) = m_j(x) = a(r)^{-1} \int_0^\infty m_j(\lambda) \phi_\lambda(x) \lambda' d\lambda.
\]

Then \(T_m = \sum_{-\infty}^{\infty} T_{m_j} \) where \(T_{m_j} f = k_j \ast f \) and \(k_j \in L^1(\mu) \). In order to prove the weak-type \((1, 1)\) inequality (1.3), it suffices to establish (see [1, p. 75])

\[
(3.3) \quad \sum_{j=-\infty}^{\infty} \int_{|x-y_0|>2|y-y_0|} |T^{y}k_j(x) - T^{y_0}k_j(x)| d\mu(x) \leq C,
\]
where C is independent of $y, y_0 \geq 0$. This will be implied in a standard way by the following estimates:

$$(3.4) \quad \int_{|x-y_0| \geq 2|y-y_0|} |T^y k_j(x) - T^{y_0} k_j(x)| \, d\mu(x) \leq C (2^j |y - y_0|)^{(r+1)/2 - k},$$

which is good when $2^j |y - y_0| \geq 1$, and

$$(3.5) \quad \int_{|x-y_0| \geq 2|y-y_0|} |T^y k_j(x) - T^{y_0} k_j(x)| \, d\mu(x) \leq C 2^j |y - y_0|,$$

which is good when $2^j |y - y_0| < 1$.

To establish (3.4) we first note that conditions (1.2) imply

$$(1.2) \quad \sum_{l=0}^{k/2} (\int_0^\infty |L^l m_j(\lambda)|^2 \, d\mu(\lambda))^{1/2} \leq CB(2^j)^{(r+1)/2 - 2l}, \quad l = 0, 1, \ldots, k/2.$$

In fact, by induction, one can easily verify the following Leibniz rule for L:

$$L^l(fg) = \sum_{0<\alpha+\beta \leq 2l} C^l_{\alpha,\beta} f^{(\alpha)}(\lambda)^{\alpha+\beta-2l}. $$

Thus, taking $R = 2^j$ in (1.2), we can estimate the left-hand side of (3.6) by

$$C \sum_{0<\alpha+\beta \leq 2l} \left(\int_0^\infty |m_j^{(\alpha)}(\lambda)|^2 \, d\mu(\lambda) \right)^{1/2} \leq C \sum_{0<\alpha+\beta \leq 2l} 2^{-\beta j} \left(\int_{2^{-j-1}}^{2^{2j+1}} |m_j^{(\alpha)}(\lambda)|^2 \, d\mu(\lambda) \right)^{1/2} \leq C \sum_{0<\alpha+\beta \leq 2l} (2^j)^{\alpha-2l} \left(\int_{2^{-j-1}}^{2^{2j+1}} |m_j^{(\alpha)}(\lambda)|^2 \, d\mu(\lambda) \right)^{1/2} \leq C B(2^j)^{(r+1)/2 - 2l}. $$

This gives (3.6). Next, using the Plancherel theorem and (3.6) we obtain

$$\|(1 + (2^j x)^2)^{k/2} k_j\|_2 = \|[(1 + 2^j L)^{k/2} m_j]^\vee\|_2 = a(r)^{-2} \|(1 + 2^j L)^{k/2} m_j\|_2 \leq C \sum_{l=0}^{k/2} (2^j)^l \|L^l m_j\|_2 \leq CB(2^j)^{(r+1)/2}. $$

Thus by Schwarz' inequality and the estimate $\|(1 + (2^j x)^2)^{-k/2}\|_2 \leq C(2^j)^{-(r+1)/2}$ we obtain

$$\| k_j \|_1 \leq \|(1 + (2^j x)^2)^{k/2} k_j\|_2 \|(1 + (2^j x)^2)^{-k/2}\|_2 \leq CB. $$
Moreover, since \(\|(2^j x)^k k_j\|_2 \leq \|(1 + (2^j x)^2)^{k/2} k_j\|_2 \) we obtain in the same way
\[
\int_{x \geq t} |k_j(x)| d\mu(x) \leq \|(2^j x)^k k_j\|_2 \left(\int_{x \geq t} (2^j x)^{-2k} d\mu(x) \right)^{1/2} \leq CB(2^j t)^{(r+1)/2-k}.
\] (3.8)

If \(\chi_A \) is the characteristic function of a set \(A \subset \mathbb{R}^+ \), then \(0 \leq T^y \chi_A(x) \leq 1 \) for \(x, y \in \mathbb{R}^+ \). We claim that
\[
T^{y_0} \chi \{ z : |z-y_0| > 2|y-y_0| \} \leq \chi \{ z : z > 2|y-y_0| \}
\] (3.9)
and
\[
T^y \chi \{ z : z-y_0 > 2|y-y_0| \} \leq \chi \{ z : z > |y-y_0| \}.
\] (3.10)

We only prove (3.9) and note that the proof of (3.10) is similar. Let \(E \) denote the set \(\{ z : |z-y_0| > 2|y-y_0| \} \). To verify (3.9) we need only check that \(0 \leq x \leq 2|y-y_0| \) implies \(T^{y_0} \chi_E(x) = 0 \). Since \(0 \leq x \leq 2|y-y_0| \) implies \((|y_0-x|, y_0+x) \cap E = \emptyset \), it follows that \(T^{y_0} \chi_E(x) = 0 \) (see remark after (2.6)). This proves (3.9).

Using (3.7) through (3.10) and the selfadjointness of generalized translations, cf. (2.3), we find that the left-hand side of (3.4) is majorized by
\[
\int_0^\infty \chi_E(x)|T^y k_j(x)| d\mu(x) + \int_0^\infty \chi_E(x)|T^{y_0} k_j(x)| d\mu(x) \\
\leq \int_{2|y-y_0|}^\infty |k_j(x)| d\mu(x) + \int_{2|y-y_0|}^\infty |k_j(x)| d\mu(x) \\
\leq CB(2^j |y-y_0|)^{(r+1)/2-k}.
\]
Thus (3.4) is established.

Finally, to establish (3.5) we use Bernstein's inequality. Since \(\tilde{k}_j = m_j \) has support in \((0, 2^{j+1}) \) it follows from Corollary (2.2) and (3.7) that
\[
\int_{|x-y_0| > 2|y-y_0|} |T^y k_j - T^{y_0} k_j| d\mu \leq \|T^y k_j - T^{y_0} k_j\|_1 \leq 2^{j+1}|y-y_0||k_j||_1 \leq CB2^j |y-y_0|.
\]
Thus (3.5) is established. Combining (3.4) and (3.5) we obtain (3.3) which completes the proof of the theorem.

4. A FINAL REMARK

In connection with the Bernstein-type inequality (2.7) the following question arises. Consider the “mean value” operators \(T^y \), \(y \geq 0 \), defined for functions on \(\mathbb{R}^n \), \(n \geq 2 \), by
\[
T^y f(x) = \int_{S^{n-1}} f(x + y\tilde{t}) d\sigma(\tilde{t}),
\]
where \(d\sigma \) is normalized surface measure on the sphere \(S^{n-1} \). In other words \(T^y \) is the convolution operator with the uniformly distributed probability measure on \(\{ x \in \mathbb{R}^n : \|x\| = y \} \). Is it true that for any \(h \in C^1(\mathbb{R}^n) \) with, say, \(\|\nabla h\| \in L^1(\mathbb{R}^n) \), the following estimate holds
\[
\|T^{y_1} h - T^{y_2} h\|_{L^1(\mathbb{R}^n)} \leq C|y_1 - y_2|,
\]
where \(C \) depends on \(h \) but not on \(y_1 \) and \(y_2 \)? We note that Theorem 2.1 gives a positive answer to this problem only in the case when \(h \) is radial.

But one can rather easily remark that the above problem may be answered affirmatively by writing out \(\|T^{y_1} h - T^{y_2} h\|_{L^1(\mathbb{R}^n)} \), interchanging the order of integration and then applying the ordinary Bernstein-type inequality on \(\mathbb{R}^n \). This yields an easy proof of Theorem 2.1 in the case of integral values of \(r \).

References

Current address (John Gosselin): DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GEORGIA, ATHENS, GEORGIA 30602

Current address (Krzysztof Stempak): INSTITUTE OF MATHEMATICS, UNIVERSITY OF WROCLAW, PL. GRUNWALDZKI 2/4, 50-384 WROCLAW, POLAND

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use