Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A weak-type estimate for Fourier-Bessel multipliers

Authors: John Gosselin and Krzysztof Stempak
Journal: Proc. Amer. Math. Soc. 106 (1989), 655-662
MSC: Primary 42B15
MathSciNet review: 1004428
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We apply Hörmander's technique to prove a weak-type $ (1,1)$ estimate for multiplier operators with respect to the Fourier-Bessel transform. This improves a result in [4, 5].

References [Enhancements On Off] (What's this?)

  • [1] R. Coifman and G. Weiss, Analyse harmonique non commutative sur certains espaces homogènes, Lecture Notes in Math., vol. 242, Springer-Verlag, Berlin and New York, 1971. MR 0499948 (58:17690)
  • [2] R. E. Edwards and G. I. Gaudry, Littlewood-Paley and multiplier theory, Springer-Verlag, Berlin and New York, 1977. MR 0618663 (58:29760)
  • [3] L. Hörmander, Estimates for translation invariant operators in $ {L^p}$ spaces, Acta Math. 104 (1960), 93-140. MR 0121655 (22:12389)
  • [4] K. Stempak, La théorie de Littlewood-Paley pour la transformation de Fourier-Bessel, C. R. Acad. Sci. Paris 303 (1986), 15-18. MR 849618 (87k:42013)
  • [5] -, The Littlewood-Paley theory for the Fourier-Bessel transform, Univ.of Wroclaw, Preprint no. 45, 1985.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B15

Retrieve articles in all journals with MSC: 42B15

Additional Information

Keywords: Fourier-Bessel transform, multipliers, generalized convolution
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society