Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

On normal structure, fixed-point property and contractions of type $ (\gamma)$


Author: M. A. Khamsi
Journal: Proc. Amer. Math. Soc. 106 (1989), 995-1001
MSC: Primary 46B20; Secondary 47H10
DOI: https://doi.org/10.1090/S0002-9939-1989-0960647-6
MathSciNet review: 960647
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that a Banach space $ X$ has normal structure provided it contains a finite codimensional subspace $ Y$ such that all spreading models for $ Y$ have normal structure. We show that a Banach space $ X$ is strictly convex if the set of fixed points of any nonexpansive map defined in any convex subset $ C \subset X$ is convex and give a sufficient condition for uniform convexity of a space in terms of nonexpansive map of type $ \left( \gamma \right)$.


References [Enhancements On Off] (What's this?)

  • [1] B. Baillon, Comportement asymptotique des contractions et semi-groupes de contractions--Equation de Schrödinger nonlinéaires et divers, Thèses présentées à l'université Paris VI, 1978.
  • [2] B. Beauzamy et J. T. Lapreste, Modèles étalés des espaces de Banach, Publication du Département de Mathématiques de l'Université Claude Bernard-Lyon I 1983.
  • [3] M. S. Brodskiĭ and D. P. Mil′man, On the center of a convex set, Doklady Akad. Nauk SSSR (N.S.) 59 (1948), 837–840 (Russian). MR 0024073
  • [4] Ronald E. Bruck, A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, Israel J. Math. 32 (1979), no. 2-3, 107–116. MR 531254, https://doi.org/10.1007/BF02764907
  • [5] Mahlon M. Day, Normed linear spaces, 3rd ed., Springer-Verlag, New York-Heidelberg, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21. MR 0344849
  • [6] Ralph DeMarr, Common fixed points for commuting contraction mappings, Pacific J. Math. 13 (1963), 1139–1141. MR 0159229
  • [7] J. R. Giles, Brailey Sims, and S. Swaminathan, A geometrically aberrant Banach space with normal structure, Bull. Austral. Math. Soc. 31 (1985), no. 1, 75–81. MR 772632, https://doi.org/10.1017/S0004972700002288
  • [8] M. A. Khamsi, Étude de la propriéte du point fixe dans les espaces de Banach et les espaces metriques, Thèses présentées à l'Université Paris VI, 1987.
  • [9] W. A. Kirk, Nonexpansive mappings and normal structure in Banach spaces, Proceedings of research workshop on Banach space theory (Iowa City, Iowa, 1981) Univ. Iowa, Iowa City, IA, 1982, pp. 113–127. MR 724109
  • [10] Thomas Landes, Permanence properties of normal structure, Pacific J. Math. 110 (1984), no. 1, 125–143. MR 722744
  • [11] Brailey Sims, “Ultra”-techniques in Banach space theory, Queen’s Papers in Pure and Applied Mathematics, vol. 60, Queen’s University, Kingston, ON, 1982. MR 778727
  • [12] S. Swaminathan, Normal structure in Banach spaces and its generalisations, Fixed points and nonexpansive mappings (Cincinnati, Ohio, 1982) Contemp. Math., vol. 18, Amer. Math. Soc., Providence, RI, 1983, pp. 201–215. MR 728601, https://doi.org/10.1090/conm/018/728601
  • [13] V. Zizler, On some rotundity and smoothness properties of Banach spaces, Dissertationes Math. Rozprawy Mat. 87 (1971), 33 pp. (errata insert). MR 0300060

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B20, 47H10

Retrieve articles in all journals with MSC: 46B20, 47H10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0960647-6
Keywords: Nonexpansive mappings, normal structure, fixed point property
Article copyright: © Copyright 1989 American Mathematical Society