Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On normal structure, fixed-point property and contractions of type $ (\gamma)$


Author: M. A. Khamsi
Journal: Proc. Amer. Math. Soc. 106 (1989), 995-1001
MSC: Primary 46B20; Secondary 47H10
DOI: https://doi.org/10.1090/S0002-9939-1989-0960647-6
MathSciNet review: 960647
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that a Banach space $ X$ has normal structure provided it contains a finite codimensional subspace $ Y$ such that all spreading models for $ Y$ have normal structure. We show that a Banach space $ X$ is strictly convex if the set of fixed points of any nonexpansive map defined in any convex subset $ C \subset X$ is convex and give a sufficient condition for uniform convexity of a space in terms of nonexpansive map of type $ \left( \gamma \right)$.


References [Enhancements On Off] (What's this?)

  • [1] B. Baillon, Comportement asymptotique des contractions et semi-groupes de contractions--Equation de Schrödinger nonlinéaires et divers, Thèses présentées à l'université Paris VI, 1978.
  • [2] B. Beauzamy et J. T. Lapreste, Modèles étalés des espaces de Banach, Publication du Département de Mathématiques de l'Université Claude Bernard-Lyon I 1983.
  • [3] M. S. Brodskii and D. P. Milman, On the center of a convex set, Dokl. Akad. Nauk USSR 59 (1948), 837-940. MR 0024073 (9:448f)
  • [4] R. Bruck, A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, Israel J. Math. 32 (1979), 107-116. MR 531254 (80j:47066)
  • [5] M. M. Day, Normed linear spaces, 3rd ed., Springer-Verlag, 1973. MR 0344849 (49:9588)
  • [6] R. DeMarr, Common fixed points for comuuting contraction mappings, Pacific J. Math. (1963), 1139-1141. MR 0159229 (28:2446)
  • [7] J. R. Giles, B. Sims, and S. Swaminathan, A geometrically aberrant Banach space with normal structure, Bull. Austral. Math. Soc. 31 (1985), 121-124. MR 772632 (86d:46019)
  • [8] M. A. Khamsi, Étude de la propriéte du point fixe dans les espaces de Banach et les espaces metriques, Thèses présentées à l'Université Paris VI, 1987.
  • [9] W. A. Kirk, Nonexpansive mappings and normal structure in Banach spaces, Proc. Research Workshop on Banach space theory, (B. L. Lin, ed.) University of Iowa, 1981. MR 724109 (85e:47081)
  • [10] T. Landes, Permanence properties of normal structure, Pacific J. Math. 110 (1984), 125-143. MR 722744 (86e:46014)
  • [11] B. Sims, "Ultra'-techniques in Banach space theory, Queen's University Kingston, Ontario, Canada. MR 778727 (86h:46032)
  • [12] S. Swaminathan, Normal structure in Banach spaces and its generalizations, Contemp. Math., volume 18, 1983, pp. 201-215, 1981. MR 728601 (85h:46031)
  • [13] V. Zizler, On some rotundity and smoothness properties of Banach spaces, Dissertationes Math. (Rozprawy Mat.) 87 (1971), 415-440. MR 0300060 (45:9108)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B20, 47H10

Retrieve articles in all journals with MSC: 46B20, 47H10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0960647-6
Keywords: Nonexpansive mappings, normal structure, fixed point property
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society