Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Terms in the Selberg trace formula for $ {\rm SL}(3,{\bf Z})\backslash {\rm SL}(3,{\bf R})/{\rm SO}(3,{\bf R})$ associated to Eisenstein series coming from a maximal parabolic subgroup


Author: D. I. Wallace
Journal: Proc. Amer. Math. Soc. 106 (1989), 875-883
MSC: Primary 11F72; Secondary 11F55, 22E40
MathSciNet review: 963577
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: There are two types of Eisenstein series associated to $ \mathrm{SL}(3, \mathbf{Z})$. This paper deals with those which are built out of cuspidal Maass waveforms for $ \mathrm{SL}(2, \mathbf{Z})$. We compute the inner product of two of them over a truncated fundamental region and then compute the rate of divergence as the truncation parameter tends to infinity. The solution of this problem is of use in computing the details of the trace formula for $ \mathrm{SL}(3, \mathbf{Z})$.


References [Enhancements On Off] (What's this?)

  • [1] James Arthur, The trace formula in invariant form, Ann. of Math. (2) 114 (1981), no. 1, 1–74. MR 625344, 10.2307/1971376
  • [2] Dennis Hejhal, The Selberg trace formula for $ \mathrm{PSL}(2, \mathbf{R})$, Vol. I, Lecture Notes in Math. 548, Springer-Verlag, 1976, New York; Vol. II, Lecture Notes in Math. 1001, Springer-Verlag, 1983, New York.
  • [3] Serge Lang, 𝑆𝐿₂(𝑅), Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. MR 0430163
  • [4] R. P. Langlands, Eisenstein series, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) Amer. Math. Soc., Providence, R.I., 1966, pp. 235–252. MR 0249539
  • [5] Peter Sarnak, Prime geodesic theorems, Ph.D. thesis, Stanford University, 1980.
  • [6] A. Selberg, Lectures on the trace formula, University of Göttingen, 1954.
  • [7] Audrey Terras, Harmonic analysis on symmetric spaces and applications. I, Springer-Verlag, New York, 1985. MR 791406
  • [8] A. B. Venkov, The Selberg trace formula for $ \mathrm{SL}(3, \mathbf{Z})$, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Akad. Nauk. SSSR 37 (1973).
  • [9] D. I. Wallace, Maximal parabolic terms in the Selberg trace formula for 𝑆𝐿(3,𝑍)\𝑆𝐿(3,𝑅)/𝑆𝑂(3,𝑅), J. Number Theory 29 (1988), no. 2, 101–117. MR 945590, 10.1016/0022-314X(88)90095-9
  • [10] D. I. Wallace, Minimal parabolic terms in the Selberg trace formula for 𝑆𝐿(3,𝑍)\𝑆𝐿(3,𝑅)/𝑆𝑂(3,𝑅), J. Number Theory 32 (1989), no. 1, 1–13. MR 1002111, 10.1016/0022-314X(89)90094-2

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11F72, 11F55, 22E40

Retrieve articles in all journals with MSC: 11F72, 11F55, 22E40


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1989-0963577-9
Article copyright: © Copyright 1989 American Mathematical Society