Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Automorphisms of extended current algebras


Authors: Paolo Piazza and Siye Wu
Journal: Proc. Amer. Math. Soc. 106 (1989), 1099-1106
MSC: Primary 22E65
DOI: https://doi.org/10.1090/S0002-9939-1989-0969525-X
MathSciNet review: 969525
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We construct a (noncentral) extension of current algebras and study the adjoint action induced by the current group.


References [Enhancements On Off] (What's this?)

  • [1] S. Albeverio and R. Hoegh-Krohn, The energy representation of Sobolev-Lie groups, Compositio Math. 36 (1978), 37-52. MR 515036 (80i:58017)
  • [2] I. B. Frenkel, Orbital theory for affine Lie algebras, Invent. Math. 77 (1984), 301-352. MR 752823 (86d:17014)
  • [3] I. M. Gelfand, M. I. Graev and A. M. Veršik, Representations of the group of smooth mappings of a manifold $ X$ into a compact Lie group, Compositio Math. 35 (1977), 299-334. MR 0578652 (58:28257)
  • [4] V. G. Kač, Constructing groups associated to infinite-dimensional Lie algebras, in Infinite Dimensional Groups with Applications (V. Kač, editor), Mathematical Sciences Research Publications, vol. 4, Springer-Verlag, New York, 1985. MR 823320 (87c:17024)
  • [5] -, Infinite dimensional Lie algebras, Cambridge University Press, Cambridge, 1985. MR 823672 (87c:17023)
  • [6] G. Segal, Unitary representations of some infinite dimensional groups, Comm. Math. Phys. 80 (1981), 301-342. MR 626704 (82k:22004)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22E65

Retrieve articles in all journals with MSC: 22E65


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0969525-X
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society