Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Each hyperinvariant subspace for a multiplication operator is spectral


Author: Sen Zhong Huang
Journal: Proc. Amer. Math. Soc. 106 (1989), 1057-1061
MSC: Primary 47A15; Secondary 47B15, 47B38
DOI: https://doi.org/10.1090/S0002-9939-1989-0975657-2
MathSciNet review: 975657
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider multiplication operators on general separable complex $ {L^p}$-spaces, for $ 1 \leq p < + \infty $, and obtain the result announced in the title. Moreover, a result of Douglas and Pearcy on normal operators is given an alternate proof.


References [Enhancements On Off] (What's this?)

  • [1] J. Diestel and J. J. Uhl, Jr., Vector measures, Amer. Math. Soc., Providence, R. I., 1977. MR 0453964 (56:12216)
  • [2] R. G. Douglas and C. Pearcy, On a topology for invariant subspaces, J. Funct. Anal. 2 (1968), 323-341. MR 0233224 (38:1547)
  • [3] N. Dunford, Spectral operators, Pacific J. Math. 4 (1954), 321-354. MR 0063563 (16:142d)
  • [4] H. E. Lacey, The isometric theory of classical Banach spaces, Springer-Verlag, Berlin, Heidelberg, New York, 1974. MR 0493279 (58:12308)
  • [5] H. Radjavi and P. Rosenthal, Hyperinvariant subspaces for spectral and $ n$-normal operators, Acta Sci. Math. (Szeged) 32 (1971), 121-126. MR 0308817 (46:7931)
  • [6] -, Invariant subspaces, Springer-Verlag, Berlin, Heidelberg, New York, 1973. MR 0367682 (51:3924)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A15, 47B15, 47B38

Retrieve articles in all journals with MSC: 47A15, 47B15, 47B38


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0975657-2
Keywords: Hyperinvariant subspace
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society