A construction for pseudocomplemented semilattices and two applications

Authors:
M. E. Adams and Matthew Gould

Journal:
Proc. Amer. Math. Soc. **106** (1989), 899-905

MSC:
Primary 06A12; Secondary 08A35, 08C15

DOI:
https://doi.org/10.1090/S0002-9939-1989-0976362-9

MathSciNet review:
976362

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A method is given by which pseudocomplemented semilattices can be constructed from graphs. Two consequences of the method are obtained, namely: there exist continuum-many quasivarieties of pseudocomplemented semilattices; for any non-zero cardinal , there exist pairwise non-isomorphic pseudocomplemented semilattices with isomorphic endomorphism monoids.

**[1]**M. E. Adams,*Implicational classes of pseudocomplemented distributive lattices*, J. London Math. Soc.**13**(1976), 381-384. MR**0404075 (53:7881)****[2]**M. E. Adams, V. Koubek, and J. Sichler,*Homomorphisms and endomorphisms in varieties of pseudocomplemented distributive lattices (with applications to Heyting algebras)*, Trans. Amer. Math. Soc.**285**(1984), 57-79. MR**748830 (86g:06018)****[3]**G. Grätzer,*General lattice theory*, Birkhäuser Verlag, Basel and Stuttgart, 1978. MR**504338 (80c:06001a)****[4]**G. Grätzer and H. Lakser,*A note on the implicational class generated by a class of structures*, Canad. Math. Bull.**16**(1973), 603-605. MR**0369216 (51:5451)****[5]**G. Grätzer, H. Lakser, and R. W. Quackenbush,*On the lattice of quasivarieties of distributive lattices with pseudocomplementation*, Acta Sci. Math. (Szeged)**42**(1980), 257-263. MR**603314 (82c:06023)****[6]**Z. Hedrlin and J. Sichler,*Any boundable binding category contains a proper class of mutually disjoint copies of itself*, Algebra Universalis**1**(1971), 97-103. MR**0285580 (44:2798)****[7]**G. T. Jones,*Pseudocomplemented semilattices*, Ph.D. Dissertation, U.C.L.A., 1972.**[8]**K. D. Magill,*The semigroup of endomorphisms of a Boolean ring*, Semigroup Forum**4**(1972), 411-416. MR**0272690 (42:7571)****[9]**C. J. Maxson,*On semigroups of Boolean ring endomorphisms*, Semigroup Forum**4**(1972), 78-82. MR**0297900 (45:6952)****[10]**H. P. Sankappanavar,*Remarks on subdirectly irreducible pseudocomplemented semi-lattices and distributive pseudocomplemented lattices*, Math. Japónica**25**(1980), 519-521. MR**602279 (82a:06015)****[11]**B. M. Schein,*Ordered sets, semilattices, distributive lattices, and Boolean algebras with homomorphic endomorphism semigroups*, Fund. Math.**68**(1970), 31-50. MR**0272686 (42:7567)****[12]**J. Schmid,*Lee classes and sentences for pseudocomplemented semilattices*, Algebra Universalis**25**(1988), 223-232. MR**950747 (89i:06009)****[13]**A. Wroński,*The number of quasivarieties of distributive lattices with pseudocomplementation*, Polish Acad. Sci. Inst. Philos. Sociol. Sect. Logic**5**(1976), 115-121. MR**0460203 (57:198)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
06A12,
08A35,
08C15

Retrieve articles in all journals with MSC: 06A12, 08A35, 08C15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0976362-9

Article copyright:
© Copyright 1989
American Mathematical Society