A construction for pseudocomplemented semilattices and two applications

Authors:
M. E. Adams and Matthew Gould

Journal:
Proc. Amer. Math. Soc. **106** (1989), 899-905

MSC:
Primary 06A12; Secondary 08A35, 08C15

MathSciNet review:
976362

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A method is given by which pseudocomplemented semilattices can be constructed from graphs. Two consequences of the method are obtained, namely: there exist continuum-many quasivarieties of pseudocomplemented semilattices; for any non-zero cardinal , there exist pairwise non-isomorphic pseudocomplemented semilattices with isomorphic endomorphism monoids.

**[1]**M. E. Adams,*Implicational classes of pseudocomplemented distributive lattices*, J. London Math. Soc. (2)**13**(1976), no. 2, 381–384. MR**0404075****[2]**M. E. Adams, V. Koubek, and J. Sichler,*Homomorphisms and endomorphisms in varieties of pseudocomplemented distributive lattices (with applications to Heyting algebras)*, Trans. Amer. Math. Soc.**285**(1984), no. 1, 57–79. MR**748830**, 10.1090/S0002-9947-1984-0748830-6**[3]**George Grätzer,*General lattice theory*, Birkhäuser Verlag, Basel-Stuttgart, 1978. Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften, Mathematische Reihe, Band 52. MR**504338****[4]**G. Grätzer and H. Lakser,*A note on the implicational class generated by a class of structures*, Canad. Math. Bull.**16**(1973), 603–605. MR**0369216****[5]**G. Grätzer, H. Lakser, and R. W. Quackenbush,*On the lattice of quasivarieties of distributive lattices with pseudocomplementation*, Acta Sci. Math. (Szeged)**42**(1980), no. 3-4, 257–263. MR**603314****[6]**Z. Hedrlín and J. Sichler,*Any boundable binding category contains a proper class of mutually disjoint copies of itself*, Algebra Universalis**1**(1971), no. 1, 97–103. MR**0285580****[7]**G. T. Jones,*Pseudocomplemented semilattices*, Ph.D. Dissertation, U.C.L.A., 1972.**[8]**Kenneth D. Magill Jr.,*The semigroup of endomorphisms of a Boolean ring*, J. Austral. Math. Soc.**11**(1970), 411–416. MR**0272690****[9]**Carlton J. Maxson,*On semigroups of Boolean ring endomorphisms*, Semigroup Forum**4**(1972), 78–82. MR**0297900****[10]**H. P. Sankappanavar,*Remarks on subdirectly irreducible pseudocomplemented semilattices and distributive pseudocomplemented lattices*, Math. Japon.**25**(1980), no. 5, 519–521. MR**602279****[11]**B. M. Schein,*Ordered sets, semilattices, distributive lattices and Boolean algebras with homomorphic endomorphism semigroups*, Fund. Math.**68**(1970), 31–50. MR**0272686****[12]**Jürg Schmid,*Lee classes and sentences for pseudocomplemented semilattices*, Algebra Universalis**25**(1988), no. 2, 223–232. MR**950747**, 10.1007/BF01229972**[13]**Andrzej Wroński,*The number of quasivarieties of distributive lattices with pseudocomplementation*, Polish. Acad. Sci. Inst. Philos. Social. Bull. Sect. Logic**5**(1976), no. 3, 115–121. MR**0460203**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
06A12,
08A35,
08C15

Retrieve articles in all journals with MSC: 06A12, 08A35, 08C15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0976362-9

Article copyright:
© Copyright 1989
American Mathematical Society