Positive semidefinite forms over ordered skew fields

Author:
Ka Hin Leung

Journal:
Proc. Amer. Math. Soc. **106** (1989), 933-942

MSC:
Primary 11E76; Secondary 11E81, 12J15, 16A39, 16A70, 16A86

DOI:
https://doi.org/10.1090/S0002-9939-1989-0976367-8

MathSciNet review:
976367

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In any ordered field , the inequality obviously holds for any . Naturally, we may ask if the same inequality holds in every ordered skew field. Surprisingly, it can be proved that in an ordered domain , the above inequality holds for any elements in iff is commutative. In this paper, we formulate a generalization of the above observation and prove that if a "positive semidefinite form" over an ordered skew field admits a "nontrivial" solution, then the skew field is actually a field.

**[A]**A. A. Albert,*On ordered algebras*, Bull. Amer. Math. Soc.**46**(1940), 521–522. MR**0001972**, https://doi.org/10.1090/S0002-9904-1940-07252-0**[F]**L. Fuchs,*Partially ordered algebraic systems*, Pergamon Press, Oxford-London-New York-Paris; Addison-Wesley Publishing Co., Inc., Reading, Mass.-Palo Alto, Calif.-London, 1963. MR**0171864****[CL]**Man Duen Choi and Tsit Yuen Lam,*An old question of Hilbert*, Conference on Quadratic Forms—1976 (Proc. Conf., Queen’s Univ., Kingston, Ont., 1976) Queen’s Univ., Kingston, Ont., 1977, pp. 385–405. Queen’s Papers in Pure and Appl. Math., No. 46. MR**0498375****[CL]**Man Duen Choi and Tsit Yuen Lam,*Extremal positive semidefinite forms*, Math. Ann.**231**(1977/78), no. 1, 1–18. MR**0498384**, https://doi.org/10.1007/BF01360024**[CLR]**M. D. Choi, T. Y. Lam and B. Reznick,*A combinatorial theory for sums of squares*, see Abstract Amer. Math. Soc., 738-12-30.**[CLR]**-,*Symmetric quartic forms*, see Abstract Amer. Math. Soc., 736-10-21.**[CLR]**M. D. Choi, T. Y. Lam, and Bruce Reznick,*Even symmetric sextics*, Math. Z.**195**(1987), no. 4, 559–580. MR**900345**, https://doi.org/10.1007/BF01166704**[L]**T. Y. Lam,*The theory of ordered fields*, Ring theory and algebra, III (Proc. Third Conf., Univ. Oklahoma, Norman, Okla., 1979) Lecture Notes in Pure and Appl. Math., vol. 55, Dekker, New York, 1980, pp. 1–152. MR**584611****[R]**Raphael M. Robinson,*Some definite polynomials which are not sums of squares of real polynomials*, Selected questions of algebra and logic (collection dedicated to the memory of A. I. Mal′cev) (Russian), Izdat. “Nauka” Sibirsk. Otdel., Novosibirsk, 1973, pp. 264–282. MR**0337878**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
11E76,
11E81,
12J15,
16A39,
16A70,
16A86

Retrieve articles in all journals with MSC: 11E76, 11E81, 12J15, 16A39, 16A70, 16A86

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0976367-8

Article copyright:
© Copyright 1989
American Mathematical Society