Positive semidefinite forms over ordered skew fields
Author:
Ka Hin Leung
Journal:
Proc. Amer. Math. Soc. 106 (1989), 933942
MSC:
Primary 11E76; Secondary 11E81, 12J15, 16A39, 16A70, 16A86
MathSciNet review:
976367
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In any ordered field , the inequality obviously holds for any . Naturally, we may ask if the same inequality holds in every ordered skew field. Surprisingly, it can be proved that in an ordered domain , the above inequality holds for any elements in iff is commutative. In this paper, we formulate a generalization of the above observation and prove that if a "positive semidefinite form" over an ordered skew field admits a "nontrivial" solution, then the skew field is actually a field.
 [A]
A.
A. Albert, On ordered algebras, Bull. Amer. Math. Soc. 46 (1940), 521–522. MR 0001972
(1,328e), http://dx.doi.org/10.1090/S000299041940072520
 [F]
L.
Fuchs, Partially ordered algebraic systems, Pergamon Press,
OxfordLondonNew YorkParis; AddisonWesley Publishing Co., Inc., Reading,
Mass.Palo Alto, Calif.London, 1963. MR 0171864
(30 #2090)
 [CL]
Man
Duen Choi and Tsit
Yuen Lam, An old question of Hilbert, Conference on Quadratic
Forms—1976 (Proc. Conf., Queen’s Univ., Kingston, Ont., 1976)
Queen’s Univ., Kingston, Ont., 1977, pp. 385–405.
Queen’s Papers in Pure and Appl. Math., No. 46. MR 0498375
(58 #16503)
 [CL]
Man
Duen Choi and Tsit
Yuen Lam, Extremal positive semidefinite forms, Math. Ann.
231 (1977/78), no. 1, 1–18. MR 0498384
(58 #16512)
 [CLR]
M. D. Choi, T. Y. Lam and B. Reznick, A combinatorial theory for sums of squares, see Abstract Amer. Math. Soc., 7381230.
 [CLR]
, Symmetric quartic forms, see Abstract Amer. Math. Soc., 7361021.
 [CLR]
M.
D. Choi, T.
Y. Lam, and Bruce
Reznick, Even symmetric sextics, Math. Z. 195
(1987), no. 4, 559–580. MR 900345
(88j:11019), http://dx.doi.org/10.1007/BF01166704
 [L]
T.
Y. Lam, The theory of ordered fields, Ring theory and algebra,
III (Proc. Third Conf., Univ. Oklahoma, Norman, Okla., 1979) Lecture
Notes in Pure and Appl. Math., vol. 55, Dekker, New York, 1980,
pp. 1–152. MR 584611
(82e:12033)
 [R]
Raphael
M. Robinson, Some definite polynomials which are not sums of
squares of real polynomials, Selected questions of algebra and logic
(collection dedicated to the memory of A. I. Mal′cev) (Russian),
Izdat. “Nauka” Sibirsk. Otdel., Novosibirsk, 1973,
pp. 264–282. MR 0337878
(49 #2647)
 [A]
 A. A. Albert, On ordered algebras, Bull. Amer. Math. Soc. 45 (1940) 521522. MR 0001972 (1:328e)
 [F]
 L. Fuchs, Partially ordered algebraic systems, Pergamon Press, Oxford, London, New York, Paris, 1963. MR 0171864 (30:2090)
 [CL]
 M. D. Choi and T. Y. Lam, An ol'd question of Hilbert, in Proceedings of the Quadratic Form Conference 1976, ed. G. Orzech, 385405. Queen's Papers in Pure and Applied Mathematics, vol. 46, Kingston, Ont., Queen's University. MR 0498375 (58:16503)
 [CL]
 , Extremal positive semidefinite forms, Math. Ann. 231 (1977), 118. MR 0498384 (58:16512)
 [CLR]
 M. D. Choi, T. Y. Lam and B. Reznick, A combinatorial theory for sums of squares, see Abstract Amer. Math. Soc., 7381230.
 [CLR]
 , Symmetric quartic forms, see Abstract Amer. Math. Soc., 7361021.
 [CLR]
 , Even symmetric sextics, Math. Z. 195 (1987), 559580. MR 900345 (88j:11019)
 [L]
 T. Y. Lam, The theory of ordered fields, Ring Theory and Algebra III, ed. B. McDonald, Lectures Notes in Pure and Applied Math., vol. 55, Dekker, New York, 1980, 1152. MR 584611 (82e:12033)
 [R]
 R. M. Robinson, Some definite polynomials which are not sum of squares of real polynomials, Selected Question of Algebra and Logic, 264282, Acad. Sci. USSR, 1973 (see abstract in Notices Amer. Math. Soc. 16 554 (1969)). MR 0337878 (49:2647)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
11E76,
11E81,
12J15,
16A39,
16A70,
16A86
Retrieve articles in all journals
with MSC:
11E76,
11E81,
12J15,
16A39,
16A70,
16A86
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198909763678
PII:
S 00029939(1989)09763678
Article copyright:
© Copyright 1989
American Mathematical Society
