Nonlinear two-point boundary value problems at resonance without Landesman-Lazer condition

Authors:
R. Iannacci and M. N. Nkashama

Journal:
Proc. Amer. Math. Soc. **106** (1989), 943-952

MSC:
Primary 34B15

DOI:
https://doi.org/10.1090/S0002-9939-1989-1004633-9

MathSciNet review:
1004633

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to study the solvability of a semilinear two-point boundary value problem of resonance type in which the nonlinear perturbation is not (necessarily) required to satisfy Landesman-Lazer condition or the monotonicity assumption. The nonlinearity may be unbounded.

**[1]**S. Ahmad,*A resonance problem in which the nonlinearity may grow linearly*, Proc. Amer. Math. Soc.**92**(1984), 381-384. MR**759657 (86e:34031)****[2]**H. Berestycki and D. G. De Figueiredo,*Double resonance in semi-linear elliptic problems*, Comm. Partial Differential Equations**6**(1981), 91-120. MR**597753 (82f:35078)****[3]**H. Brézis,*Analyse fonctionnelle, théorie et applications*, Masson, Paris, 1983. MR**697382 (85a:46001)****[4]**L. Cesari and R. Kannan,*Existence of solutions of a nonlinear differential equation*, Proc. Amer. Math. Soc.**88**(1983), 605-613. MR**702284 (85d:34017)****[5]**-,*Qualitative study of a class of nonlinear boundary value problem at resonance*, J. Differential Equations**56**(1985), 63-81. MR**772121 (86g:47083)****[6]**D. G. De Figueiredo and W. M. Ni,*Perturbations of second order linear elliptic problems by nonlinearities without Landesman-Lazer condition*, Nonlinear Anal.**3**(1979), 629-634. MR**541873 (81k:35052)****[7]**P. Drábek,*On the resonance problem with nonlinearity which has arbitrary linear growth*, J. Math. Anal. Appl.**127**(1987), 435-442. MR**915069 (88j:34035)****[8]**S. Fucik,*Surjectivity of operators involving linear noninvertible part and nonlinear compact perturbation*, Funkcial. Ekvac.**17**(1974), 73-83. MR**0365255 (51:1508)****[9]**J. V. A. Gonçalves,*On bounded nonlinear perturbations of an elliptic equation at resonance*, Nonlinear Anal.**5**(1981), 57-60. MR**597281 (82h:35034)****[10]**C. P. Gupta,*Perturbations of second order linear elliptic problems by unbounded nonlinearities*, Nonlinear Anal.**6**(1982), 919-933. MR**677617 (84c:35042)****[11]**R. Iannacci and M. N. Nkashama,*Nonlinear boundary value problems at resonance*, Nonlinear Anal.**11**(1987), 455-473. MR**887655 (88e:47107)****[12]**-,*Unbounded perturbations of forced second order ordinary differential equations at resonance*, J. Differential Equations**69**(1987), 289-309. MR**903389 (88i:34105)****[13]**R. Kannan, J. J. Nieto and M. B. Ray,*A class of nonlinear boundary value problems without Landesman-Lazer condition*, J. Math. Anal. Appl.**105**(1985), 1-11. MR**773569 (86c:34031)****[14]**N. G. Lloyd,*Degree theory*, Cambridge Univ. Press, 1978. MR**0493564 (58:12558)****[15]**J. Mawhin, J. R. Ward and M. Willem,*Necessary and sufficient conditions for the solvability of a nonlinear two-point boundary value problem*, Proc. Amer. Math. Soc.**93**(1985), 667-674. MR**776200 (86d:34029)****[16]**M. Schechter, J. Shapiro and M. Snow,*Solution of the nonlinear problem**in a Banach Space*, Trans. Amer. Math. Soc.**241**(1978), 69-78. MR**492290 (81g:47069)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34B15

Retrieve articles in all journals with MSC: 34B15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-1004633-9

Keywords:
Semilinear equations at resonance,
Dirichlet problem,
Neumann problem,
Leray-Schauder continuation method,
topological degree

Article copyright:
© Copyright 1989
American Mathematical Society