Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Every semiprimary ring is the endomorphism ring of a projective module over a quasihereditary ring

Authors: Vlastimil Dlab and Claus Michael Ringel
Journal: Proc. Amer. Math. Soc. 107 (1989), 1-5
MSC: Primary 16A46; Secondary 16A65
MathSciNet review: 943793
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The paper provides a proof of the following statement: Given a semiprimary ring $ R$, there is a quasi-hereditary ring $ A$ and an idempotent $ e \in A$ such that $ R \simeq eAe$.

References [Enhancements On Off] (What's this?)

  • [A] M. Auslander, Representation dimension of Artin algebras, Queen Mary College Mathematical Notes, (London), 1971.
  • [CPS] E. Cline, B. Parshall, and L. Scott, Finite-dimensional algebras and highest weight categories, J. Reine Angew. Math. 391 (1988), 85–99. MR 961165 (90d:18005)
  • [DR $ _{1}$] V. Dlab and C. M. Ringel, Quasi-hereditary algebras, Ill. J. Math. (to appear).
  • [DR $ _{2}$] -, Auslander algebras as quasi-hereditary algebras, J. London Math. Soc. (to appear).
  • [PS] B. Parshall and L. Scott, Derived categories, quasi-hereditary algebras and algebraic groups, Proc. Ottawa-Moosonee Workshop in Algebra, Carleton Univ. Notes No. 3 (1988).
  • [S] Leonard L. Scott, Simulating algebraic geometry with algebra. I. The algebraic theory of derived categories, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 271–281. MR 933417 (89c:20062a)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A46, 16A65

Retrieve articles in all journals with MSC: 16A46, 16A65

Additional Information

PII: S 0002-9939(1989)0943793-2
Article copyright: © Copyright 1989 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia