On the theorems of Šarkovskiĭ and Štefan on cycles

Author:
Bolesław Gaweł

Journal:
Proc. Amer. Math. Soc. **107** (1989), 125-132

MSC:
Primary 26A18

DOI:
https://doi.org/10.1090/S0002-9939-1989-0960642-7

MathSciNet review:
960642

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: New proofs of the well-known theorems of Šarkovskiĭ and Štefan on cycles of a continuous real mapping are given.

**[1]**L. Block,*Stability of periodic orbits in the theorem of Sarkovskii*, Proc. Amer. Math. Soc.**81**(1981), 333-336. MR**593484 (82b:58071)****[2]**L. Block, J. Guckenheimer, M. Misiurewicz and L. S. Young,*Periodic points and topological entropy*, Lecture Notes in Mathematics Nr. 819, Springer, Berlin (1980), 18-34. MR**591173 (82j:58097)****[3]**U. Burkart,*Interval mapping graphs and periodic points of continuous functions*, Journ. of Comb. Theory**32**(1982), 57-68. MR**649837 (83h:58080)****[4]**C. Ho and Ch. Morris,*A graph-theoretic proof of Sharkovsky's theorem on the periodic points of continuous functions*, Pacific J. Math.**96**(1981), 361-370. MR**637977 (83d:58056)****[5]**A. N. Šarkovskiĭ,*Coexistence of cycles of a continuous transformation of line into itself*, Ukrain. Mat. Ž.**16**(1964), 61-71. MR**0159905 (28:3121)****[6]**P. Štefan,*A theorem of Šarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line*, Comun. Math. Phys.**54**(1977), 237-258. MR**0445556 (56:3894)****[7]**P. D. Straffin, Jr.,*Periodic points of continuous functions*, Math. Mag.**51**(1978), 99-105. MR**498731 (80h:58043)****[8]**Gy. Targonski,*Topics in iteration theory*, Vandenhoeck und Ruprecht, 1981. MR**623257 (82j:39001)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
26A18

Retrieve articles in all journals with MSC: 26A18

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0960642-7

Article copyright:
© Copyright 1989
American Mathematical Society