Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the theorems of Šarkovskiĭ and Štefan on cycles


Author: Bolesław Gaweł
Journal: Proc. Amer. Math. Soc. 107 (1989), 125-132
MSC: Primary 26A18
DOI: https://doi.org/10.1090/S0002-9939-1989-0960642-7
MathSciNet review: 960642
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: New proofs of the well-known theorems of Šarkovskiĭ and Štefan on cycles of a continuous real mapping are given.


References [Enhancements On Off] (What's this?)

  • [1] L. Block, Stability of periodic orbits in the theorem of Sarkovskii, Proc. Amer. Math. Soc. 81 (1981), 333-336. MR 593484 (82b:58071)
  • [2] L. Block, J. Guckenheimer, M. Misiurewicz and L. S. Young, Periodic points and topological entropy, Lecture Notes in Mathematics Nr. 819, Springer, Berlin (1980), 18-34. MR 591173 (82j:58097)
  • [3] U. Burkart, Interval mapping graphs and periodic points of continuous functions, Journ. of Comb. Theory 32 (1982), 57-68. MR 649837 (83h:58080)
  • [4] C. Ho and Ch. Morris, A graph-theoretic proof of Sharkovsky's theorem on the periodic points of continuous functions, Pacific J. Math. 96 (1981), 361-370. MR 637977 (83d:58056)
  • [5] A. N. Šarkovskiĭ, Coexistence of cycles of a continuous transformation of line into itself, Ukrain. Mat. Ž. 16 (1964), 61-71. MR 0159905 (28:3121)
  • [6] P. Štefan, A theorem of Šarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line, Comun. Math. Phys. 54 (1977), 237-258. MR 0445556 (56:3894)
  • [7] P. D. Straffin, Jr., Periodic points of continuous functions, Math. Mag. 51 (1978), 99-105. MR 498731 (80h:58043)
  • [8] Gy. Targonski, Topics in iteration theory, Vandenhoeck und Ruprecht, 1981. MR 623257 (82j:39001)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A18

Retrieve articles in all journals with MSC: 26A18


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0960642-7
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society