Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A note on joint hyponormality

Authors: Scott McCullough and Vern Paulsen
Journal: Proc. Amer. Math. Soc. 107 (1989), 187-195
MSC: Primary 47B20
MathSciNet review: 972236
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe certain cones of polynomials in two variables naturally associated to the class(es) of operators $ T$ for which the tuple $ (T,{T^2}, \ldots ,{T^n})$ is jointly (weakly) hyponormal. As an application we give an example of an operator $ T$ such that the tuple $ (T,{T^2})$ is jointly but not weakly hyponormal. Further, we show that there exists a polynomially hyponormal operator which is not subnormal if and only if there exists a weighted shift with the same property.

References [Enhancements On Off] (What's this?)

  • [A1] J. Agler, Hypercontractions and subnormality, J. Operator Th. 13 (1985), 207-217. MR 775993 (86i:47028)
  • [A2] -, Rational dilation on an annulus, Ann. of Math. (2) 121 (1985), no. 3, 537-563. MR 794373 (87a:47007)
  • [At] A. Athavale, On joint hyponormality of operators, Proc. Amer. Math. Soc., (to appear). MR 943059 (89f:47033)
  • [B] J. Bram, Subnormal operators, Duke Math. J. 22 (1955), 75-94. MR 0068129 (16:835a)
  • [CS] J. Conway and W. Szymanski, Linear combinations of hyponormal operators, Rocky Mountain J. Math., (to appear). MR 972659 (90a:47059)
  • [C1] R. E. Curto, Proceedings of the A.M.S. Summer Research Institute, 1988, (to appear).
  • [C2] -, Quadratically hyponormal weighted shifts, preprint.
  • [CMX] R. E. Curto, P. Muhly, J. Xia, Hyponormal pairs of commuting operators, preprint. MR 1017663 (90m:47037)
  • [E] M. Embry, A generalization of the Halmos-Bram condition for subnormality, Acta. Sci. Math. (Szeged) 35 (1973), 61-64. MR 0328652 (48:6994)
  • [F] P. Fan, A note on hyponormal weighted shifts, Proc. Amer. Math. Soc. 92 (1984), 271-272. MR 754718 (86c:47037)
  • [La] A. Lambert, Subnormality and weighted shifts, J. London Math. Soc. 14 (1976), 476-480. MR 0435915 (55:8866)
  • [Lu] A. Lubin, Weighted shifts and products of subnormal operators, Indiana University Math. J. 26 (1977). MR 0448139 (56:6448)
  • [MP] M. Martin, M. Putinar, A unitary invariant for hyponormal operators, preprint. MR 899653 (88k:47031)
  • [Sz] B. Sz-Nagy, A moment problem for self-adjoint operators, Acta. Math. Acad. Sci. Hungar. 3 (1952), 285-292. MR 0055583 (14:1096c)
  • [S] Slocinski, Normal extensions of commuting subnormal operators, Studia Math. 54 (1976), 259-266.
  • [X] D. Xia, Spectral theory of hyponormal operators, Operator Th. Adv. Appl. vol. 10, Birkhäuser Verlag, Basel-Boston-Stuttgart, 1983. MR 806959 (87j:47036)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47B20

Retrieve articles in all journals with MSC: 47B20

Additional Information

Keywords: Jointly hyponormal
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society