The Odlyzko conjecture and O'Hara's unimodality proof

Authors:
Dennis Stanton and Doron Zeilberger

Journal:
Proc. Amer. Math. Soc. **107** (1989), 39-42

MSC:
Primary 05A30; Secondary 05A15, 11B65

DOI:
https://doi.org/10.1090/S0002-9939-1989-0972238-1

MathSciNet review:
972238

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We observe that Andrew Odlyzko's conjecture that the Maclaurin coefficients of have alternating signs is an almost immediate consequence of an identity that is implied by Kathy O'Hara's recent magnificent combinatorial proof of the unimodality of the Gaussian coefficients.

**[1]**G. Andrews,*Partitions and Durfee dissection*, Amer. J. Math.,**101**(1979), pp. 735-742. MR**533197 (80h:10020)****[2]**I. G. Macdonald,*Symmetric functions and Hall polynomials*, Clarendon Press, Oxford, 1979. MR**553598 (84g:05003)****[3]**A. Odlyzko,*On differences of the partition function*, Acta Arith.,**49**(1988), pp. 237-254. MR**932523 (89c:11151)****[4]**K. M. O'Hara,*Unimodality of Gaussian coefficients: a constructive proof*, research announcement.**[5]**-,*Unimodality of Gaussian coefficients: a constructive proof*, J. Combin. Theory Ser. A (to appear). MR**1031611 (90k:05024)****[6]**D. Zeilberger,*Kathy O'Hara's constructive proof of the unimodality of the Gaussian polynomials*, Amer. Math. Monthly (to appear). MR**1008789 (90g:05021)****[7]**-,*A one-line high school algebra proof of the unimodality of the Gaussian polynomials**for*, Proceedings of the IMA Workshop on -series, Vol. 18, Springer.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
05A30,
05A15,
11B65

Retrieve articles in all journals with MSC: 05A30, 05A15, 11B65

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0972238-1

Article copyright:
© Copyright 1989
American Mathematical Society