Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Affine invariant subspaces of $ C({\bf C})$

Authors: Yaki Sternfeld and Yitzhak Weit
Journal: Proc. Amer. Math. Soc. 107 (1989), 231-236
MSC: Primary 46E10
MathSciNet review: 979053
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A linear subspace $ A$ of $ C({\mathbf{C}})$ is affine invariant if $ f(z) \in A$ implies that $ f(az + b) \in A$ for every $ a,b \in {\mathbf{C}}$.

We present a classification of the affine invariant closed subspaces of $ C({\mathbf{C}})$, and of those affine invariant subspaces which are also composition invariant (i.e., $ f,g \in A$ implies that $ f \circ g \in A)$).

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E10

Retrieve articles in all journals with MSC: 46E10

Additional Information

Article copyright: © Copyright 1989 American Mathematical Society