The linear and quadratic Schur subgroups over the integers of a number field
Author:
Carl R. Riehm
Journal:
Proc. Amer. Math. Soc. 107 (1989), 8387
MSC:
Primary 11R65; Secondary 11R54, 13A20, 20C10
MathSciNet review:
979218
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be an algebraic number field and let be a ring of integers in (where is a set of primes of containing all the archimedean primes); that is to say, is a Dedekind domain whose field of quotients is . In analogy with a theorem of T. Yamada in the case of a field of characteristic 0, it is shown that if is the Schur subgroup of the Brauer group and if , where is any field containing the maximal abelian extension of in , then , i.e. the Brauer classes in are those obtained from by extension of the scalars to . A similar theorem is proved as well in the case of the Schur subgroup of the quadratic Brauer group , where is an involution of .
 [HTW]
Ian
Hambleton, Laurence
Taylor, and Bruce
Williams, An introduction to maps between surgery obstruction
groups, Algebraic topology, Aarhus 1982 (Aarhus, 1982) Lecture Notes
in Math., vol. 1051, Springer, Berlin, 1984, pp. 49–127. MR 764576
(86b:57017), http://dx.doi.org/10.1007/BFb0075564
 [I]
I.
Martin Isaacs, Character theory of finite groups, Academic
Press [Harcourt Brace Jovanovich Publishers], New York, 1976. Pure and
Applied Mathematics, No. 69. MR 0460423
(57 #417)
 [J]
G.
J. Janusz, Tensor products of orders, J. London Math. Soc. (2)
20 (1979), no. 2, 186–192. MR 551444
(81g:16009), http://dx.doi.org/10.1112/jlms/s220.2.186
 [M]
R.
Mollin, The Schur group of a field of characteristic zero,
Pacific J. Math. 76 (1978), no. 2, 471–478. MR 506148
(80c:12018)
 [MO]
I. Reiner, Maximal orders, London Math. Soc. Monographs, no. 5, Academic Press, London, 1975.
 [OS]
Morris
Orzech and Charles
Small, The Brauer group of commutative rings, Marcel Dekker
Inc., New York, 1975. Lecture Notes in Pure and Applied Mathematics, Vol.
11. MR
0457422 (56 #15627)
 [R1]
C.
Riehm, The Schur subgroup of the Brauer group
of cyclotomic rings of integers, Proc. Amer.
Math. Soc. 103 (1988), no. 1, 27–30. MR 938638
(89c:13005), http://dx.doi.org/10.1090/S0002993919880938638X
 [R2]
C.
Riehm, The quadratic Schur subgroup over local and global
fields, Math. Ann. 283 (1989), no. 3,
479–489. MR
985243 (90c:12003), http://dx.doi.org/10.1007/BF01442740
 [S]
David
J. Saltman, Azumaya algebras with involution, J. Algebra
52 (1978), no. 2, 526–539. MR 495234
(80a:16013), http://dx.doi.org/10.1016/00218693(78)902533
 [Y]
Toshihiko
Yamada, The Schur subgroup of the Brauer group, Lecture Notes
in Mathematics, Vol. 397, SpringerVerlag, Berlin, 1974. MR 0347957
(50 #456)
 [HTW]
 I. Hambleton, L. Taylor, and E. B. Williams, An introduction to the maps between surgery obstruction groups, Algebraic Topology, Aarhus 1982, pp. 49127; Lecture Notes in Math., vol. 1051, SpringerVerlag, New York, 1984. MR 764576 (86b:57017)
 [I]
 I. M. Isaacs, Character theroy of finite groups, Academic Press, New York, 1976. MR 0460423 (57:417)
 [J]
 G. J. Janusz, Tensor products of orders, J. London Math. Soc. (2) 20 (1979), 186192. MR 551444 (81g:16009)
 [M]
 R. Mollin, The Schur group of a field of characteristic zero, Pacific J. Math. 76 (1978), 471478. MR 506148 (80c:12018)
 [MO]
 I. Reiner, Maximal orders, London Math. Soc. Monographs, no. 5, Academic Press, London, 1975.
 [OS]
 M. Orzech and C. Small, The Brauer group of commutative rings, Lecutre Notes in Pure and Appl. Math., no. 11, Dekker, New York, 1975. MR 0457422 (56:15627)
 [R1]
 C. Riehm, The Schur subgroup of the Brauer group of cyclotomic rings of integers, Proc. Amer. Math. Soc. 103(1988), 2730. MR 938638 (89c:13005)
 [R2]
 C. Riehm, The quadratic Schur subgroup over local and global fields Math. Annalen, 283 ((1989), 479489. MR 985243 (90c:12003)
 [S]
 D. Saltman, Azumaya algebras with involution, J. Algebra 52 (1978), 526539. MR 495234 (80a:16013)
 [Y]
 T. Yamada, The Schur subgroup of the Brauer group, Lecture Notes in Math., vol. 397, SpringerVerlag, New York, 1974. MR 0347957 (50:456)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
11R65,
11R54,
13A20,
20C10
Retrieve articles in all journals
with MSC:
11R65,
11R54,
13A20,
20C10
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198909792180
PII:
S 00029939(1989)09792180
Keywords:
Schur subgroup,
integral Brauer group,
integral representations,
representations of finite groups,
quadratic Brauer group,
Azumaya algebras,
algebraic number fields
Article copyright:
© Copyright 1989 American Mathematical Society
