ZERO CYCLES ON QUADRIC HYPERSURFACES

RICHARD G. SWAN

(Communicated by Louis J. Ratliff, Jr.)

Abstract. Let X be a projective quadric hypersurface over a field of characteristic not 2. It is shown that the Chow group $A_0(X)$ of 0-cycles modulo rational equivalence is infinite cyclic, generated by any point of minimal degree.

Let k be a field of characteristic not 2 and let $X \subseteq \mathbb{P}^{d+1}_k$ be a quadric hypersurface defined by an equation $q = 0$ where q is a quadratic form in $d + 2$ variables over k. In [4] I computed the K-theory of X assuming that q is nondegenerate. However the problem of computing the Chow groups of X, which was proposed in [3] is, to the best of my knowledge, still open. I will treat here the first nontrivial case by determining the Chow group $A_0(X)$ of 0-cycles modulo rational equivalence [1]. The result turns out to hold also in the singular case. My original proof made use of the results of [4]. I would like to thank Mohan Kumar for pointing out that this was not necessary and that only elementary facts about A_0 are needed.

Theorem. Let $X \subseteq \mathbb{P}^{d+1}_k$ be defined by $q = 0$ where q is a quadratic form over a field k of characteristic not 2 and $d > 0$. Then $A_0(X) = \mathbb{Z}$. It is generated by any rational point if one exists. If X has no rational point then $A_0(X)$ is generated by any point of degree 2 over k.

We can obviously assume that q is not identically 0 so that $\dim X = d$. If $d = 0$, it is then clear that $A_0(X) = \mathbb{Z} \times \mathbb{Z}$ if X consists of two rational points and $A_0(X) = \mathbb{Z}$ otherwise. For the reader's convenience I will restate the following standard classification for the case $d = 1$.

Lemma 1. Let $X \subseteq \mathbb{P}^2_k$ be a quadric curve. Then one of the following holds:

1. $X = \mathbb{P}^1$ embedded in \mathbb{P}^2 by the Veronese embedding.
2. X is a smooth conic with no rational point.
3. $X = L_1 \cup L_2$ is a union of two lines defined over k with one common point.

Received by the editors December 16, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 14C25; Secondary 11E04, 14G05.

©1989 American Mathematical Society
0002-9939/89 $1.00 + .25 per page
(4) \(X = L \cup L' \) where \(L \) is a line defined over a quadratic extension of \(k \) (but not over \(k \)) and \(L' \) is its conjugate. The only rational point on \(X \) is the intersection \(L \cap L' \).

(5) \(X \) is a double line defined by \(l^2 = 0 \) where \(l \) is a linear form over \(k \).

If \(q \) is nondegenerate and nonisotropic we have case (2). In the isotropic case we can write \(q = xy - z^2 \), getting case (1). If \(q \) reduces to \(ax^2 + by^2 \) with \(ab \neq 0 \), we have case (3) if \(-a^{-1}b\) is a square in \(k \), and case (4) otherwise. If \(q \) reduces to \(ax \) we have case (5).

I will write \(x \sim y \) when \(x \) and \(y \) are rationally equivalent. In the following lemmas, \(X \) will always denote the quadric hypersurface of the theorem.

Lemma 2. If \(x \) and \(y \) are rational points of \(X \) then \(x \sim y \).

Proof. Let \(P \) be a 2-plane in \(P^{d+1} \) containing the points \(x \) and \(y \). Then \(P \cong \mathbb{P}^2 \). If \(P \subset X \) the result is clear. Otherwise \(X \cap P \) is as in Lemma 1. In case (1) the result is again clear. Case (2) cannot occur. In case (3) \(x \) and \(y \) are rationally equivalent to the common point \(a = L_1 \cap L_2 \). In case (4) there is only one rational point, so \(x = y \). Finally, in case (5) \(x \) and \(y \) lie on the line \(l = 0 \), so \(x \sim y \).

Lemma 3. The theorem is true if \(X \) has a rational point.

Proof. Let \(x \) be a rational point and let \(y \) be any point. Let \(k' = \kappa(y) \) be the residue field of \(y \) and let \(X' = k' \otimes_k X \) with projection \(\pi: X' \rightarrow X \). Then \(X' \) is just the quadric hypersurface defined by \(q = 0 \) over \(k' \). Now \(\pi^{-1}(y) = \text{Spec} \ k' \otimes_k \kappa(y) \) has a rational point \(y' \) and \(\pi^{-1}(x) = \text{Spec} \ k' \otimes_k \kappa(x) = \text{Spec} \ k' = \{x'\} \) with \(x' \) rational. By Lemma 2, \(x' \sim y' \). Therefore \(y = \pi_p(y') \sim \pi_p(x') = |k':k| \cdot x \). Thus \(A_0(X) \) is generated by \(x \). Since \(\deg: A_0(X) \rightarrow \mathbb{Z} \) by \(\deg z = |k(z):k| \), the result follows.

We can now assume that \(X \) has no rational point. Since we can write \(q = \sum a_i x_i^2 \), it is clear that \(X \) has points of degree 2. Also \(X \) must be smooth since all \(a_i \) must be nonzero. The following is a special case of [3, Lemma 13.4].

Lemma 4. If \(X \) has no rational point the all points of \(X \) have even degree.

Proof. Suppose \(x \in X \) has odd degree. Let \(k' = \kappa(x) \). Then \(k' \otimes_k X \) has a rational point so that \(q \) is isotropic over \(k' \). Since \(|k':k| \) is odd, a theorem of Springer [2, Chap. 7, Theorem 2.3] implies that \(q \) is isotropic over \(k \), so \(X \) has a rational point.

Lemma 5. Let \(K \) be the kernel of \(\deg: A_0(X) \rightarrow \mathbb{Z} \). Then \(2K = 0 \).

Proof. We can assume that \(X \) has no rational point. Let \(x \in X \) have degree 2 and set \(k' = \kappa(x) \). Let \(X' = k' \otimes_k X \) with projection \(\pi: X' \rightarrow X \). Then \(\pi^{-1}(\cdot) = \text{Spec} \ k' \otimes_k \kappa(x) = \{x', x''\} \) where \(x' \) and \(x'' \) are rational over \(k' \). If \(y \) is any closed point, \(\pi^{-1}(y) = \text{Spec} \ k' \otimes_k \kappa(y) = \) either \(\{y', y''\} \) or \(\{z\} \).
depending on whether \(k' \otimes_k \kappa(y) \) splits or not. By Lemma 3 we can write \(y' = mx' \) or \(z = mx' \) getting either \(y = \pi_*(y') = m\pi_*(x') = mx \) or \(2y = \pi_*(z) = mx \). It follows that twice any 0-cycle is rationally equivalent to a multiple of \(x \).

Lemma 6. If \(x \) and \(y \) have degree 2 then \(x \sim y \).

Proof. We can assume \(X \) has no rational point by Lemma 3. Let \(V = X(\overline{k}) \) be the variety corresponding to \(X \) over the algebraic closure \(\overline{k} \) of \(k \). The point \(x \) corresponds to a pair of points \(\xi, \xi' \) of \(V \). Since \(\text{char} \, k \neq 2 \), \(\kappa(x) \) is Galois over \(k \) so that \(\xi \) and \(\xi' \) are distinct and conjugate over \(k \). The line \(L \) spanned by \(\xi \) and \(\xi' \) is stable under the Galois group and therefore is defined over \(k \). Since \((L \cdot X) = 2 \) by Bezout's theorem, we see that \(L \cdot X = x \).

Similarly, \(y = L' \cdot X \) for some line \(L' \) defined over \(k \). Since \(L \sim L' \) as 1-cycles on \(\mathbb{P}^{d+1} \), it follows that \(x \sim y \).

If \(y \) is a closed point of \(X \) I will say that \(y \) is “good” if \(y \sim mx \) for some integer \(m \) and some point \(x \) of degree 1 or 2. The theorem will follow from Lemmas 3 and 6 if we can show that all points are good.

Lemma 7. Let \(\pi: X' = k' \otimes_k X \rightarrow X \) be the canonical projection where \(|k':k| \) is odd. If all points of \(\pi^{-1}(y) \) are good, so is \(y \).

Proof. We can assume that \(X \) has no rational points. The same is then true of \(X' \) by Springer’s theorem as in the proof of Lemma 4. Therefore if \(x \) is a point of degree 2 on \(X \) then \(\pi^{-1}(x) = \{x'\} \), since otherwise \(\pi^{-1}(x) \) would consist of two rational points.

Let \(k' \otimes_k \kappa(y) = A_1 \times \cdots \times A_r \) where the \(A_i \) are local artinian with residue fields \(k_i = A_i/\mathfrak{m}_i = \kappa(y) \) where the \(y_i \) are the points of \(\pi^{-1}(y) \). Then

\[
|k':k| = \dim_{\kappa(y)} k' \otimes_k \kappa(y) = \sum_i l(A_i)|k_i:\kappa(y)| \text{ so for some } i, \, |\kappa(y_i):\kappa(y)| \text{ is odd.}
\]

Since \(y_i \) is good, \(y_i \sim mx' \) for some \(m \) and hence \(\pi_*(y_i) = [\kappa(y_i):\kappa(y)][y \sim m\pi_*(x') = m|k_i:k|x \). Since \(|\kappa(y_i):\kappa(y)| \) is odd and \(2y \sim mx \) for some \(m' \) by Lemma 5, the result follows.

Lemma 8. Let \(\eta: X' = k' \otimes_k X \rightarrow X \) be the canonical projection where \(|k':k| = 2 \). Let \(y \) be a closed point of \(X \) such that \(\eta^{-1}(y) = \{y',y''\} \) has two distinct points. If \(y' \) is good, so is \(y \).

Proof. We can assume that \(X \) has no rational points. If \(x' \in X' \) is rational, then \(x = \eta_*(x') \) has degree 2 and \(y' \sim mx' \) implies \(y = \eta_*(y') \sim mx \). If \(X' \) has no rational point and \(x \in X \) has degree 2, then \(\eta^{-1}(x) = \{x'\} \) where \(x' \) has degree 2 on \(X' \). Now \(y' \sim mx' \), so \(y = \eta_*(y') \sim m\eta_*(x') = 2mx \) as required.

We will now show that all closed points of \(X \) are good. Let \(y \in X \) have degree \(n \). By induction, we can assume that all points of degree less than \(n \) are good on all the hypersurfaces \(k' \otimes_k X \). Let \(K \) be the “normal closure” of \(\kappa(y) \), i.e., the composite of all conjugates of \(\kappa(y) \) in the algebraic closure.
\bar{k} of k. Let $G = \text{Aut}(K/k)$. Then K^G is purely inseparable over k and therefore of odd degree since $\text{char } k \neq 2$. Let H be a 2-Sylow subgroup of G. Then $k' = K^H$ is of odd degree over K^G and hence over k. Let $\pi: X' = k' \otimes_k X \to X$ be the canonical projection. By Lemma 7 it will suffice to show that each point y' of $\pi^{-1}(y)$ is good. Now $\kappa(y')$ is a quotient of $k' \otimes_k \kappa(y)$. Any embedding of $\kappa(y')$ in \bar{k} fixing k' will necessarily send $\kappa(y)$ into K so we get $k' = K^H \subset \kappa(y') \subset K$ and $\kappa(y') = K^L$ for some subgroup L of H. If $L = H$, then y' is rational and hence good. If $L < H$, let M be a maximal proper subgroup of H containing L. Then $|H:M| = 2$. Let $k'' = K^M$ and consider $\eta: X'' = k'' \otimes_k X \to X'$. Since $k'' = K^M \subset K^L = \kappa(y')$ and $|k'' : k'| = 2$, $k'' \otimes_k, \kappa(y') \approx \kappa(y') \times \kappa(y')$ so $\eta^{-1}(y') = \{u, v\}$ where $\kappa(u) = \kappa(y') = \kappa(v)$. Since $|\kappa(y') : k''| = \frac{1}{2}|\kappa(y') : k'|$, the induction hypothesis shows that u is good. Therefore y' is good by Lemma 8 and hence y is good by Lemma 7.

The corresponding result for the affine case now follows easily.

Corollary. Let $V \subset \mathbb{A}^{d+1}_k$ be the affine hypersurface defined by $q = 1$ where q is a quadratic form over a field k of characteristic not 2 and $d > 0$. If q is nonisotropic and represents 1 then $A_0(V) = \mathbb{Z}/2\mathbb{Z}$. In all other cases $A_0(V) = 0$.

Proof. Let $X \subset \mathbb{P}^{d+1}_k$ be defined by $q - y^2 = 0$ and let $X_\infty = X \cap (y = 0)$. Then $V = X - X_\infty$ and we have an exact sequence $A_0(X_\infty) \to A_0(X) \to A_0(V) \to 0$. Since $\text{deg}: A_0(X) \to \mathbb{Z}$ is injective by the theorem, it follows that $A_0(V) = \text{deg} A_0(X)/\text{deg} A_0(X_\infty)$, which is zero unless X has a rational point and X_∞ does not, in which case it is $\mathbb{Z}/2\mathbb{Z}$.

References

Department of Mathematics, University of Chicago, Chicago, Illinois 60637