Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Zero cycles on quadric hypersurfaces


Author: Richard G. Swan
Journal: Proc. Amer. Math. Soc. 107 (1989), 43-46
MSC: Primary 14C25; Secondary 11E04
DOI: https://doi.org/10.1090/S0002-9939-1989-0979219-2
MathSciNet review: 979219
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be a projective quadric hypersurface over a field of characteristic not 2. It is shown that the Chow group $ {A_0}(X)$ of 0-cycles modulo rational equivalence is infinite cyclic, generated by any point of minimal degree.


References [Enhancements On Off] (What's this?)

  • [1] W. Fulton, Interesection theory, Ergeb. Math. Grenzgeb. (3), 2, Springer, Berlin-New York, 1984. MR 732620 (85k:14004)
  • [2] T. Y. Lam, Algebraic theory of quadratic forms, Benjamin Cummings, Reading, Mass. 1973. MR 0396410 (53:277)
  • [3] R. G. Swan, Vector bundles, projective modules, and the $ K$-theory of spheres, Proc. of the John Moore Conference, Algebraic Topology and Algebraic $ K$-Theory (W. Browder, ed.) Ann. of Math. Stud. 113 (1987), 432-522. MR 921488 (89f:18009)
  • [4] -, $ K$-theory of quadric hypersurfaces, Ann. of Math. (2) 122 (1985), 113-153. MR 799254 (87g:14006)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14C25, 11E04

Retrieve articles in all journals with MSC: 14C25, 11E04


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0979219-2
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society