Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

Uniqueness of aperiodic kneading sequences


Author: K. M. Brucks
Journal: Proc. Amer. Math. Soc. 107 (1989), 223-229
MSC: Primary 58F08; Secondary 26A18, 54H20
MathSciNet review: 979221
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The trapezoidal function $ {f_e}(x)$ is defined for fixed $ e \in (0,1/2)$ by $ {f_e}(x) = (1/e)x$ for $ x \in [0,e],{f_e}(x) = 1$ for $ x \in (e,1 - e)$, and $ {f_e}(x) = (1/e)(1 - x)$ for $ x \in [1 - e,1]$. For a given $ e$ and the associated one-parameter family of maps $ \{ \lambda {f_e}(x)\vert\lambda \in [0,1]\} $, we show that if $ A$ is an aperiodic kneading sequence, then there is a unique $ \lambda \in [0,1]$ so that the itinerary of $ \lambda $ under the map $ \lambda {f_e}$ is $ A$. From this, we conclude that the "stable windows" are dense in $ [0,1]$ for the one-parameter family $ \lambda {f_e}$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58F08, 26A18, 54H20

Retrieve articles in all journals with MSC: 58F08, 26A18, 54H20


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1989-0979221-0
PII: S 0002-9939(1989)0979221-0
Article copyright: © Copyright 1989 American Mathematical Society