Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

The isometries of $ H\sp 1\sb \mathcal{H}$


Authors: Michael Cambern and Krzysztof Jarosz
Journal: Proc. Amer. Math. Soc. 107 (1989), 205-214
MSC: Primary 46E40; Secondary 43A17, 46J15, 47B38
MathSciNet review: 979225
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{H}$ be a finite-dimensional complex Hilbert space. In this article we characterize the linear isometries of the Banach space $ H_\mathcal{H}^1$ onto itself. We show that $ T$ is such an isometry iff $ T$ is of the form $ TF(z) = UF(\psi (z))\psi '(z)$, for $ F \in H_\mathcal{H}^1$ and $ z$ in the unit disc, where $ \psi $ is a conformal map of the disc onto itself, and $ U$ is a unitary operator on $ \mathcal{H}$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46E40, 43A17, 46J15, 47B38

Retrieve articles in all journals with MSC: 46E40, 43A17, 46J15, 47B38


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1989-0979225-8
PII: S 0002-9939(1989)0979225-8
Article copyright: © Copyright 1989 American Mathematical Society