Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Hypertranscendence of the functional equation $ g(x\sp 2)=[g(x)]\sp 2+cx$


Author: Peter Borwein
Journal: Proc. Amer. Math. Soc. 107 (1989), 215-221
MSC: Primary 39B10; Secondary 30D05
DOI: https://doi.org/10.1090/S0002-9939-1989-0979226-X
MathSciNet review: 979226
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The functional equation $ g({x^2}) = {[g(x)]^2} + cx$ has a unique nontrivial solution that is analytic at zero. We show, for $ c > 0$, that the solution of this equation satisfies no algebraic differential equation.


References [Enhancements On Off] (What's this?)

  • [1] J. Arazy, J. Claesson, S. Janson and J. Peetre, Means and their iterations, in Proc. 19th Nordic Congress of Math., ed. J. R. Stefánson, Reykjavik, 1985. MR 828035 (87f:01012)
  • [2] J. M. Borwein and P. B. Borwein, Pi and the AGM--a study in analytic number theory and computational complexity, Wiley, New York, 1987.
  • [3] -, The way of all means, MAA Monthly 94 (1987), 519-522. MR 1541118
  • [4] D. H. Lehmer, On the compounding of certain means, J. Math. Anal. Appl. 36 (1971), 183-200. MR 0281696 (43:7411)
  • [5] J. H. Loxton and A. J. van der Poorten, A class of hypertranscendental functions, Aequationes Math. 16 (1977), 93-106. MR 0476659 (57:16218)
  • [6] -, Transcendence and algebraic independence by a method of Mahler, in Transcendence Theory: Advances and Applications, eds. A. Baker and D. W. Masser, Academic Press, London and New York, 1977. MR 0476660 (57:16219)
  • [7] K. Mahler, Remarks on a paper by W. Schwartz, J. Number Theory 1 (1969), 512-521. MR 0249366 (40:2611)
  • [8] -, On a special nonlinear functional equation, Proc. Roy. Soc. London Ser. A 378 (1981), 155-178. MR 635225 (82m:10042)
  • [9] J. F. Ritt, Transcendental transcendency of certain functions of Poincaré, Math. Ann. 95 (1926), 671-682. MR 1512299
  • [10] L. A. Rubel, Some research problems about algebraic differential equations, Trans. Amer. Math. Soc. 280 (1983), 43-52. MR 712248 (84j:34005)
  • [11] J. H. M. Wedderburn, The functional equation $ g({x^2}) = 2ax + {[g(x)]^2}$, Ann. of Math. 24 (1922), 121-140. MR 1502633

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 39B10, 30D05

Retrieve articles in all journals with MSC: 39B10, 30D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0979226-X
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society