COMPLEMENTED COPIES OF \(c_0 \)
IN VECTOR-VALUED HARDY SPACES

PATRICK N. DOWLING

(Communicated by William J. Davis)

Abstract. Let \(X \) be a complex Banach space containing a copy of \(c_0 \), let \(T \) be the unit circle and let \(D \) be the open unit disk in the complex plane. Then \(H^p(T, X) \) contains a complemented copy of \(c_0 \) for \(1 \leq p < \infty \). The corresponding result for \(H^p(D, X) \) fails for \(1 \leq p \leq \infty \).

1. Introduction

If \(X \) is a Banach space which contains a copy of \(c_0 \) then \(L^p([0,1], X) \) contains a complemented copy of \(c_0 \) for \(1 \leq p < \infty \) [5]. In this note we consider the corresponding problem for vector-valued Hardy spaces. However, there are two natural Hardy spaces to consider, \(H^p(T, X) \) and \(H^p(D, X) \). We will show that \(H^p(T, X) \) contains a complemented copy of \(c_0 \) whenever \(1 \leq p < \infty \) and \(X \) is a complex Banach space containing a copy of \(c_0 \). The proof will allow us to extend the result to a slightly larger class of spaces. We will also show that the spaces \(H^p(D, L^\infty) \) do not contain complemented copies of \(c_0 \) for \(1 \leq p \leq \infty \).

2. Preliminaries and results

Throughout this note \(T \) will denote the unit circle, \(\frac{d\theta}{2\pi} \) will denote normalized Lebesgue measure on \(T \), and \(D \) will be the open unit disk in the complex plane.

Let \(X \) be a complex Banach space and let \(1 \leq p \leq \infty \). The space \(H^p(D, X) \) is the collection of all \(X \)-valued analytic functions on \(D \) with \(\|f\|_p < \infty \) where

\[
\|f\|_p = \sup_{0 \leq r < 1} \left\{ \frac{1}{2\pi} \int_0^{2\pi} \|f(re^{i\theta})\|^p \frac{d\theta}{2\pi} \right\}^{1/p}
\]

for \(1 \leq p < \infty \), and

\[
\|f\|_\infty = \sup_{z \in D} \|f(z)\|.
\]
If \(f : T \to X \) is a vector-valued function then its Fourier coefficients are

\[
\hat{f}(n) = \int_0^{2\pi} f(e^{i\theta}) e^{-in\theta} \frac{d\theta}{2\pi}, \quad \text{for each } n \in \mathbb{Z}.
\]

For \(1 \leq p \leq \infty \), we define

\[
H^p(T, X) = \{ f \in L^p(T, X) : \hat{f}(n) = 0 \quad \text{for all } n < 0 \}.
\]

Before we get to the main result we need a lemma which appears implicitly in [2] and [7].

Lemma. If a Banach space \(X \) contains a sequence \((x_n)_{n=1}^\infty \) which is equivalent to the unit vector basis of \(c_0 \) and if \((x_n^*)_{n=1}^\infty \) is a weak* null sequence in \(X^* \) such that \(\inf_n |x_n^*(x_n)| > 0 \), then \(X \) contains a complemented copy of \(c_0 \).

Proof. Define an operator \(S : X \to c_0 \) by \(S(x) = (x_n^*(x))^\infty_{n=1} \). Clearly, \(S \) is well defined, since \((x_n^*)_{n=1}^\infty \) is weak* null, and also bounded and linear. The series \(\sum_{n=1}^\infty x_n \) is weakly unconditionally Cauchy but \(\sum_{n=1}^\infty S(x_n) \) is not unconditionally convergent in \(c_0 \) because \(\inf_n |x_n^*(x_n)| > 0 \). By [1] there is a subsequence \((y_n)_{n=1}^\infty \) of \((x_n)_{n=1}^\infty \) such that \((y_n)_{n=1}^\infty \) is equivalent to the unit vector basis of \(c_0 \) and \(S|_{[y_n]_{n=1}^\infty} \) is an isomorphism of \([y_n]_{n=1}^\infty \) onto \(Y = [S(y_n)]_{n=1}^\infty \). \(Y \) is a subspace of \(c_0 \) which is isomorphic to \(c_0 \) and so is complemented in \(c_0 \) by a bounded linear projection \(Q \) (see [8]). Consider the operator \(P : X \to X \) defined by \(P(x) = (S|_{[y_n]_{n=1}^\infty})^{-1}QS(x) \) for \(x \in X \). \(P \) is a bounded linear projection of \(X \) onto \([y_n]_{n=1}^\infty \), and since \([y_n]_{n=1}^\infty \) is isomorphic to \(c_0 \), the proof is complete.

Theorem. Let \(X \) be a complex Banach space and \(1 \leq p < \infty \). If \(X \) contains a copy of \(c_0 \), then \(H^p(T, X) \) contains a complemented copy of \(c_0 \).

Proof. Let \((x_n)_{n=1}^\infty \) be a sequence in \(X \) equivalent to the unit vector basis of \(c_0 \). Then there are constants \(K_1, K_2 > 0 \) so that for any choice of scalars \(a_1, a_2, \ldots, a_n \),

\[
K_1 \max_{1 \leq j \leq n} |a_j| \leq \| \sum_{j=1}^n a_j x_j \| \leq K_2 \max_{1 \leq j \leq n} |a_j|.
\]

For each \(n \in \mathbb{N} \) define \(y_n \in H^0(T) \) by \(y_n(e^{i\theta}) = e^{in\theta} \). Then \(x_n \otimes y_n \in H^p(T, X) \), where \((x_n \otimes y_n)(e^{i\theta}) = x_n e^{in\theta} \) and

\[
K_1 \max_{1 \leq j \leq n} |a_j| \leq \| \sum_{j=1}^n a_j (x_j \otimes y_j)(e^{i\theta}) \| \leq K_2 \max_{1 \leq j \leq n} |a_j|.
\]

Therefore

\[
K_1 \max_{1 \leq j \leq n} |a_j| \leq \| \sum_{j=1}^n a_j (x_j \otimes y_j) \|_p \leq K_2 \max_{1 \leq j \leq n} |a_j|.
\]

That is, \((x_n \otimes y_n)_{n=1}^\infty \) is equivalent to the unit vector basis of \(c_0 \) in \(H^p(T, X) \). Now let \((x_n^*)_{n=1}^\infty \) be a bounded sequence in \(X^* \) which is biorthogonal to \((x_n)_{n=1}^\infty \).
and let \((y_n^*)^\infty_{n=1}\) be a sequence in \(L^\infty(T)\) defined by \(y_n^*(e^{i\theta}) = e^{-i\theta}\). Clearly,
\((x_n ^* \otimes y_n ^*)^\infty_{n=1}\) is a sequence in \((H^p(T,X))^*\), and for each \(n \in \mathbb{N}\),
\((x_n ^* \otimes y_n ^*)(x_n \otimes y_n) = 1\). Also, if \(f \in H^p(T,X)\), then \((x_n ^* \otimes y_n ^*)(f) = x_n ^*(\hat{f}(n))\) and \(x_n ^*(\hat{f}(n)) \to 0\) as \(n \to \infty\), since \(\|\hat{f}(n)\| \to 0\) as \(n \to \infty\). To see this, define \(S_f: L^\infty(T) \to X\) by

\[
S_f(g) = \int_0^{2\pi} g(e^{i\theta})f(e^{i\theta})\frac{d\theta}{2\pi} \quad \text{for } g \in L^\infty(T).
\]

\(S_f\) is a compact linear operator [3], so \((\hat{f}(n))_{n=1}^\infty = \{S_f(e^{-i\theta})\}_{n=1}^\infty\) is a relatively compact subset of \(X\). If \(x^* \in X^*\), then

\[
x^*(\hat{f}(n)) = x^*S_f(e^{-i\theta}) = \int_0^{2\pi} x^*f(e^{i\theta})e^{-i\theta}\frac{d\theta}{2\pi} \to 0
\]
as \(n \to \infty\) since \(x^* f \in L^p(T)\) and the Riemann-Lebesgue lemma. Therefore \((\hat{f}(n))_{n=1}^\infty\) converges weakly to 0 and hence converges to 0 in norm.

Thus \((x_n ^* \otimes y_n ^*)^\infty_{n=1}\) is weak* null so \((x_n ^* \otimes y_n ^*)^\infty_{n=1}\) and \((x_n ^* \otimes y_n ^*)^\infty_{n=1}\) satisfy the conditions of the lemma, which completes the proof.

Remark 1. It is clear that this proof can be used in the following setting: Let \(G\) be a compact abelian group with normalized Haar measure on \(G\). Let \(\hat{G}\) be the dual group of \(G\), and let \(\Lambda\) be a subset of \(\hat{G}\). For \(1 \leq p \leq \infty\) and a complex Banach space \(X\), we define

\[
L^p_\Lambda(G,X) = \{f \in L^p(G,X): \hat{f}(\gamma) = 0 \quad \text{for all } \gamma \notin \Lambda\}.
\]

If \(X\) contains a copy of \(c_0\), if \(1 \leq p < \infty\), and if \(\Lambda\) is infinite, then \(L^p_\Lambda(G,X)\) contains a complemented copy of \(c_0\). Note that if \(f \in L^1(G)\), then the net \((\hat{f}(\gamma))_{\gamma \in \Lambda}\) is an element of \(c_0(\Lambda)\) (see [6]).

Remark 2. The conclusion of the theorem does not hold true if \(H^p(T,X)\) is replaced by \(H^p(D,X)\). For example, consider \(H^p(D,\ell_\infty)\) for \(1 \leq p \leq \infty\). By a result of Dowling [4], \(H^p(D,\ell_\infty)\) is a dual Banach space for \(1 \leq p \leq \infty\). However, Bessaga and Pelczynski [1] have proved that \(c_0\) is never complemented in the dual of a Banach space. Therefore, \(H^p(D,\ell_\infty)\) does not contain complemented copies of \(c_0\). We know that \(H^p(T,\ell_\infty)\) is isomorphic to a subspace of \(H^p(D,\ell_\infty)\), so the results of this note show that \(H^p(T,\ell_\infty)\) is not isomorphic to a complemented subspace of \(H^p(D,\ell_\infty)\) when \(1 \leq p < \infty\).

Acknowledgment

The author wishes to thank Professor Joe Diestel for introducing him to this problem and for many helpful discussions relating to this problem.

References

Department of Mathematics, Ohio State University, Columbus, Ohio 43210

Current address: Department of Mathematics and Statistics, Miami University, Oxford, Ohio 45056