Irreducible representations of normal spaces

Author:
Leonard R. Rubin

Journal:
Proc. Amer. Math. Soc. **107** (1989), 277-283

MSC:
Primary 54F45; Secondary 54B25

DOI:
https://doi.org/10.1090/S0002-9939-1989-0991708-3

MathSciNet review:
991708

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We define the notion of irreducible polyhedral representation of a normal space making use of approximate inverse systems. This generalizes the concept of irreducible polyhedral expansions introduced in 1937 by Freudenthal for metric compacta and generalized to uniform spaces by Isbell in 1961. We show that every normal space has an irreducible polyhedral representation whose dimension is and whose weight is weight . Approximate inverse systems were first introduced by S. Mardešić and this author. The concept generalizes that of inverse system and was essentially used in proving that each Hausdorff compactum of integral cohomological dimension is the cell-like image of a Hausdorff compactum of covering dimension .

**[En]**Ryszard Engelking,*Dimension theory*, North-Holland Publishing Co., Amsterdam-Oxford-New York; PWN—Polish Scientific Publishers, Warsaw, 1978. Translated from the Polish and revised by the author; North-Holland Mathematical Library, 19. MR**0482697****[Fr]**Hans Freudenthal,*Entwicklungen von Räumen und ihren Gruppen*, Compositio Math.**4**(1937), 145–234 (German). MR**1556968****[Hu]**Sze-tsen Hu,*Theory of retracts*, Wayne State University Press, Detroit, 1965. MR**0181977****[Is]**J. R. Isbell,*Irreducible polyhedral expansions*, Nederl. Akad. Wetensch. Proc. Ser. A 64 = Indag. Math.**23**(1961), 242–248. MR**0190902****[M1]**Sibe Mardešić,*On covering dimension and inverse limits of compact spaces*, Illinois J. Math.**4**(1960), 278–291. MR**0116306****[M-R 1]**Sibe Mardešić and Leonard R. Rubin,*Approximate inverse systems of compacta and covering dimension*, Pacific J. Math.**138**(1989), no. 1, 129–144. MR**992178****[M-R 2]**-,*Cell-like mappings and non-metrizable compacta of finite cohomological dimension*, Trans. Amer. Math. Soc. (to appear).**[M-S]**Sibe Mardešić and Jack Segal,*Stability of almost commutative inverse systems of compacta*, Topology Appl.**31**(1989), no. 3, 285–299. MR**997496**, https://doi.org/10.1016/0166-8641(89)90025-4**[Na]**J. Nagata,*Topics in dimension theory*, General topology and its relations to modern analysis and algebra, V (Prague, 1981) Sigma Ser. Pure Math., vol. 3, Heldermann, Berlin, 1983, pp. 497–506. MR**698449****[R-S]**Leonard R. Rubin and Philip J. Schapiro,*Cell-like maps onto noncompact spaces of finite cohomological dimension*, Topology Appl.**27**(1987), no. 3, 221–244. MR**918533**, https://doi.org/10.1016/0166-8641(87)90088-5

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54F45,
54B25

Retrieve articles in all journals with MSC: 54F45, 54B25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0991708-3

Keywords:
Covering dimension,
approximate inverse system,
almost commutative system,
irreducible representation

Article copyright:
© Copyright 1989
American Mathematical Society