-Dolbeault complexes on singular curves and surfaces

Author:
Peter Haskell

Journal:
Proc. Amer. Math. Soc. **107** (1989), 517-526

MSC:
Primary 58G05

DOI:
https://doi.org/10.1090/S0002-9939-1989-0975647-X

MathSciNet review:
975647

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Give the smooth part of a singular curve or normal surface the metric induced from the ambient projective space. On this incomplete manifold the minimal -complex of -forms has finite-dimensional cohomology groups. The Euler characteristic of this cohomology equals the Todd genus of any desingularization of the singular variety.

**[1]**J. Cheeger,*On the Hodge theory of Riemannian pseudomanifolds*, Proc. Sympos. Pure Math., Vol. 36, Amer. Math. Soc., Providence, R.I., 1980, pp. 91-146. MR**573430 (83a:58081)****[2]**J. Cheeger, M. Goresky, and R. MacPherson,*-cohomology and intersection homology of singular algebraic varieties*, Seminar on Differential Geometry (S. T. Yau, ed.) Princeton Univ. Press, Princeton, N.J., 1982, pp. 303-340. MR**645745 (84f:58005)****[3]**K. Friedrichs,*The identity of weak and strong extensions of differential operators*, Trans. Amer. Math. Soc.**55**(1944), 132-151. MR**0009701 (5:188b)****[4]**M. Goresky and R. MacPherson,*Problems and bibliography on intersection homology*, Intersection Cohomology (A. Borel et al.), Birkhauser, Boston, 1984, pp. 221-233. MR**788180****[5]**P. Griffiths and J. Harris,*Principles of algebraic geometry*, Wiley, New York, 1978. MR**507725 (80b:14001)****[6]**P. Haskell,*Index theory on curves*, Trans. Amer. Math. Soc.**288**(1985), 591-604. MR**776394 (86m:58142)****[7]**W. C. Hsiang and V. Pati,*-cohomology of normal algebraic surfaces*, I, Invent. Math.**81**(1985), 395-412. MR**807064 (87f:32024)****[8]**R. MacPherson,*Global questions in the topology of singular spaces*, Proc. Internat. Congr. of Mathematicians, Polish Scientific Publishers, Warsaw, 1984, pp. 213-235. MR**804683 (86m:58016)****[9]**M. Nagase,*On the heat operators of normal singular algebraic surfaces*, J. Differential Geom.**28**(1988), 37-57. MR**950554 (89h:58202)****[10]**W. Pardon,*The**-cohomology of an algebraic surface*, Topology (to appear). MR**1003581 (90i:32014)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
58G05

Retrieve articles in all journals with MSC: 58G05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0975647-X

Article copyright:
© Copyright 1989
American Mathematical Society