Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



$ L\sp 2$-Dolbeault complexes on singular curves and surfaces

Author: Peter Haskell
Journal: Proc. Amer. Math. Soc. 107 (1989), 517-526
MSC: Primary 58G05
MathSciNet review: 975647
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Give the smooth part of a singular curve or normal surface the metric induced from the ambient projective space. On this incomplete manifold the minimal $ {L^2}\bar \partial $-complex of $ (0,q)$-forms has finite-dimensional cohomology groups. The Euler characteristic of this cohomology equals the Todd genus of any desingularization of the singular variety.

References [Enhancements On Off] (What's this?)

  • [1] J. Cheeger, On the Hodge theory of Riemannian pseudomanifolds, Proc. Sympos. Pure Math., Vol. 36, Amer. Math. Soc., Providence, R.I., 1980, pp. 91-146. MR 573430 (83a:58081)
  • [2] J. Cheeger, M. Goresky, and R. MacPherson, $ {L^2}$-cohomology and intersection homology of singular algebraic varieties, Seminar on Differential Geometry (S. T. Yau, ed.) Princeton Univ. Press, Princeton, N.J., 1982, pp. 303-340. MR 645745 (84f:58005)
  • [3] K. Friedrichs, The identity of weak and strong extensions of differential operators, Trans. Amer. Math. Soc. 55 (1944), 132-151. MR 0009701 (5:188b)
  • [4] M. Goresky and R. MacPherson, Problems and bibliography on intersection homology, Intersection Cohomology (A. Borel et al.), Birkhauser, Boston, 1984, pp. 221-233. MR 788180
  • [5] P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, New York, 1978. MR 507725 (80b:14001)
  • [6] P. Haskell, Index theory on curves, Trans. Amer. Math. Soc. 288 (1985), 591-604. MR 776394 (86m:58142)
  • [7] W. C. Hsiang and V. Pati, $ {L^2}$-cohomology of normal algebraic surfaces, I, Invent. Math. 81 (1985), 395-412. MR 807064 (87f:32024)
  • [8] R. MacPherson, Global questions in the topology of singular spaces, Proc. Internat. Congr. of Mathematicians, Polish Scientific Publishers, Warsaw, 1984, pp. 213-235. MR 804683 (86m:58016)
  • [9] M. Nagase, On the heat operators of normal singular algebraic surfaces, J. Differential Geom. 28 (1988), 37-57. MR 950554 (89h:58202)
  • [10] W. Pardon, The $ {L^2} - \bar \partial $-cohomology of an algebraic surface, Topology (to appear). MR 1003581 (90i:32014)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58G05

Retrieve articles in all journals with MSC: 58G05

Additional Information

Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society