Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the existence of idempotent liftings


Author: S. Grekas
Journal: Proc. Amer. Math. Soc. 107 (1989), 367-371
MSC: Primary 28A51; Secondary 28C15
DOI: https://doi.org/10.1090/S0002-9939-1989-0979215-5
MathSciNet review: 979215
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An existence theorem for idempotent liftings is proved. This implies that every compact measure space with full support and separable measure algebra admits an idempotent lifting.


References [Enhancements On Off] (What's this?)

  • [1] K. Bichteler, An existence theorem for strong liftings, J. of Math Analysis and Appl. 33 (1) (1971), 20-22. MR 0269805 (42:4700)
  • [2] N. Bourbaki, Integration, ch. IV, V, Hermann, Paris, 1965. MR 0219684 (36:2763)
  • [3] D. H. Fremlin, On two theorems of Mokobodzski, note of 23/6/77.
  • [4] P. Georgiou, Über eine spezielle Desintegration, Math. Ann. 197 (1972), 279-285. MR 0320269 (47:8808)
  • [5] -, A semigroup structure in the space of liftings, Math. Ann. 208 (1974), 195-202. MR 0344887 (49:9626)
  • [6] -, On "idempotent" liftings, in Lecture Notes in Math., vol. 794, Springer-Verlag, Berlin, Heidelberg, New York 1980, 254-260. MR 577975 (81k:28006)
  • [7] S. Grekas, On idempotent liftings, Bull, of the Greek Math. Soc., to appear. MR 854919 (88c:28005)
  • [8] A. and C. Ionescu Tulcea, Topics in the theory of lifting, Springer-Verlag, Berlin, Heidelberg, New York, 1969. MR 0276438 (43:2185)
  • [9] V. Losert, A measure space without the strong lifting property, Math. Ann. 239 (1979), 119-128. MR 519007 (80f:28006)
  • [10] R. E. Zink, On the structure of measure spaces, Acta Math. 107 (1962), 53-71. MR 0140643 (25:4060)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A51, 28C15

Retrieve articles in all journals with MSC: 28A51, 28C15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0979215-5
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society