Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the homotopy type of the spectrum representing elliptic cohomology

Author: Andrew Baker
Journal: Proc. Amer. Math. Soc. 107 (1989), 537-548
MSC: Primary 55N22; Secondary 11F11
MathSciNet review: 982399
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we analyse the homotopy type at primes $ p > 3$ of the ring spectrum $ E\ell \ell $ representing a version of elliptic cohomology whose coefficient ring $ E\ell {\ell _ * }$ agrees with the ring of modular forms for $ S{L_2}(\mathbb{Z})$. For any prime (=maximal) graded ideal $ \mathcal{P} \triangleleft E\ell {\ell _*}$ containing the Eisenstein function $ {E_{p - 1}}$ as well as $ p$, we show that there is a morphism of ring spectra

$\displaystyle \widehat{E(2)} \to (E\ell \ell )_{\hat{\mathcal{P}}}$

and a corresponding splitting

$\displaystyle (E\ell \ell )_{\hat{\mathcal{P}}} \simeq \mathop \bigvee\limits_i {\Sigma ^{2\theta (i)}}\widehat{E(2)}$

of algebra spectra over $ \widehat{E(2)}$ (the $ {I_2}$-adic completion of $ E(2)$); here $ (\;)_{\hat{\mathcal{P}}}$ denotes the $ \mathcal{P}$-adic completion of the spectrum $ E\ell \ell $. Moreover, there is a multiplicative reduction $ {(E\ell \ell /\mathcal{P})^ * }(\;)$ and we similarly show that there is a splitting of $ K(2)$ algebra spectra

$\displaystyle E\ell \ell /\mathcal{P} \simeq \mathop \bigvee\limits_i {\Sigma ^{2\theta '(i)}}K(2).$

In each case the indexing $ i$ ranges over a finite set.

References [Enhancements On Off] (What's this?)

  • [Ad] J. F. Adams, Stable homotopy and generalised homology, University of Chicago Press, Chicago. MR 1324104 (96a:55002)
  • [Ba 1] A. Baker, Hecke operators as operations in elliptic cohomology, preprint, 1988. MR 1037690 (91m:55005)
  • [Ba 2] -, Elliptic cohomology, $ p$-adic modular forms and Atkin's operator $ {U_p}$, preprint, 1988.
  • [BaWü] A. Baker and U. Würgler, Liftings of formal group laws and the Artinian completion of $ v_n^{ - 1}BP$, preprint, 1988.
  • [Ig 1] J. Igusa, On the transformation theory of elliptic functions, Amer. J. Math. 81 (1959), 436-52. MR 0104668 (21:3421)
  • [Ig 2] -, On the algebraic theory of elliptic modular functions, J. Math. Soc. Japan 20 (1968), 96-106. MR 0240103 (39:1457)
  • [Ka] N. Katz, $ p$-adic properties of modular schemes and modular forms, Lecture Notes in Mathematics 350 (1973), 69-190. MR 0447119 (56:5434)
  • [Ko] N. Koblitz, Introduction to elliptic curves and modular forms, Springer-Verlag, New York. MR 766911 (86c:11040)
  • [Land 1] P. S. Landweber, Elliptic cohomology and modular forms, Lecture Notes in Mathematics 1326 (1988), 55-68. MR 970281
  • [Land 2] -, Supersingular elliptic curves and congruences for Legendre polynomials, Lecture Notes in Mathematics 1326 (1988), 69-93. MR 970282
  • [Ma] H. Matsumura, Commutative ring theory, Cambridge University Press, Cambridge. MR 879273 (88h:13001)
  • [Rav] D. C. Ravenel, Complex cobordism and the stable homotopy Groups of spheres, Academic Press, London. MR 860042 (87j:55003)
  • [Se 1] J.-P. Serre, Cours d'arithmétique, Presses Universitaires de France, Vendôme.
  • [Se 2] -, Formes modulaires et fonctions zeta $ p$-adiques, Lecture Notes in Mathematics 350 (1973), 191-268. MR 0404145 (53:7949a)
  • [Se 3] -, Congruences et formes modulaires, Séminaire Bourbaki, Vol 24$ ^{e}$, no. 416, Lecture Notes in Mathematics 317 (1971/2), 319-38.
  • [Si] J. Silverman, The arithmetic of elliptic curves, Springer-Verlag, New York.
  • [Ya] N. Yagita, The exact functor theorem for $ B{P_ * }/{I_n}$, Proc. Jap. Acad. 52 (1976), 1-3. MR 0394631 (52:15432)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55N22, 11F11

Retrieve articles in all journals with MSC: 55N22, 11F11

Additional Information

Keywords: Elliptic cohomology, $ {v_2}$-Periodicity, Morava $ K$-theory
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society