Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A new proof of uniqueness for multiple trigonometric series


Author: J. Marshall Ash
Journal: Proc. Amer. Math. Soc. 107 (1989), 409-410
MSC: Primary 42A63; Secondary 26A24
DOI: https://doi.org/10.1090/S0002-9939-1989-0984780-8
Erratum: Proc. Amer. Math. Soc. 108 (1990), null.
MathSciNet review: 984780
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Georg Cantor's 1870 theorem that an everywhere convergent to zero trigonometric series has all its coefficients equal to zero is given a new proof. The new proof uses the first formal integral of the series, while Cantor's proof used the second formal integral.


References [Enhancements On Off] (What's this?)

  • [1] J. M. Ash, Uniqueness of representation by trigonometric series, Amer. Math. Monthly, (to appear). MR 1033355 (90k:42021)
  • [2] G. Cantor, Über einen die trigonometrischen Reihen betreffenden Lehrsatz, Crelles J. für Math. 72 (1870) 130-138; also in Gesammelte Abhandlungen, Georg Olms, Hildesheim, 1962, 71-79. MR 0148517 (26:6024)
  • [3] -, Beweis, das eine für jeden reellen Wert von $ x$ durch eine trigonometrische Reihe gegebene Funktion $ f\left( x \right)$ sich nur auf eine einzige Weise in dieser Form darstellen lässt, Crelles J. für Math. 72 (1870) 139-142; also in Gesammelte Abhandlungen, Georg Olms, Hildesheim, 1962, 80-83.
  • [4] C. Freiling and D. Rinne, A symmetric density property: monotonicity and the approximate symmetric derivative, Proc. of the Amer. Math. Soc., 104 (1988) 1098-1102. MR 936773 (89g:26009)
  • [5] -, A symmetric density property for measurable sets, Real Analysis Exchange, 14 (1988-89) 203-209. MR 988365 (90c:28004)
  • [6] E. W. Hobson, The theory of functions of a real variable and the theory of Fourier's series, 2 vols., Dover Publications, New York, 1957, MR 19 #1166.
  • [7] A. Zygmund, Trigonometric series, vol. 1, 2nd rev. ed., Cambridge Univ. Press, New York, 1959, MR 21 #6498. MR 0107776 (21:6498)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42A63, 26A24

Retrieve articles in all journals with MSC: 42A63, 26A24


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0984780-8
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society