A note on the category of the free loop space

Authors:
E. Fadell and S. Husseini

Journal:
Proc. Amer. Math. Soc. **107** (1989), 527-536

MSC:
Primary 55M30; Secondary 55P35, 58E10, 58F05

MathSciNet review:
984789

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A useful result in critical point theory is that the LjusternikSchnirelmann category of the space of *based* loops on a compact simply connected manifold is infinite (because the cup length of is infinite). However, the space of *free* loops on may have trivial products. This note shows that, nevertheless, the space of the free loops also has infinite category.

**[1]**Antonio Ambrosetti and Vittorio Coti Zelati,*Critical points with lack of compactness and singular dynamical systems*, Ann. Mat. Pura Appl. (4)**149**(1987), 237–259. MR**932787**, 10.1007/BF01773936**[2]**Edward Fadell,*On fiber spaces*, Trans. Amer. Math. Soc.**90**(1959), 1–14. MR**0101520**, 10.1090/S0002-9947-1959-0101520-0**[3]**-,*Cohomological methods in non-free**-spaces with applications to general Borsuk-Ulam theorems and critical point theorems for invariant functionals*, Nonlinear Functional Analysis and its Applications, Reidel, (1986), 1-47.**[4]**-,*Lectures in cohomological index theories of**-spaces with applications to critical point theory*, Raccolta Di Universeta della Calabria, (1987), Cosenza, Italy.**[5]**E. Fadell and S. Husseini,*Relative cohomological index theories*, Adv. in Math.**64**(1987), no. 1, 1–31. MR**879854**, 10.1016/0001-8708(87)90002-8**[6]**Edward Fadell and Lee Neuwirth,*Configuration spaces*, Math. Scand.**10**(1962), 111-118. MR**0141126****[7]**Witold Hurewicz,*On the concept of fiber space*, Proc. Nat. Acad. Sci. U. S. A.**41**(1955), 956–961. MR**0073987****[8]**P. Rabinowitz,*Minimax methods in critical point theory with applications to differential equations*, CBMS Report No. 65, 1984.**[9]**-,*Periodic solutions for some forced singular Hamiltonian systems*, Festschrift fur Jurgen Moser (to appear).**[10]**Jacob T. Schwartz,*Generalizing the Lusternik-Schnirelman theory of critical points*, Comm. Pure Appl. Math.**17**(1964), 307–315. MR**0166796****[11]**Jean-Pierre Serre,*Homologie singulière des espaces fibrés. Applications*, Ann. of Math. (2)**54**(1951), 425–505 (French). MR**0045386****[12]**Edwin H. Spanier,*Algebraic topology*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0210112****[13]**Micheline Vigué-Poirrier and Dennis Sullivan,*The homology theory of the closed geodesic problem*, J. Differential Geometry**11**(1976), no. 4, 633–644. MR**0455028**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
55M30,
55P35,
58E10,
58F05

Retrieve articles in all journals with MSC: 55M30, 55P35, 58E10, 58F05

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1989-0984789-4

Article copyright:
© Copyright 1989
American Mathematical Society