REPRESENTATIVES FOR FINITE SETS

XING-DE JIA

(Communicated by William W. Adams)

ABSTRACT. This paper considers a combinatorial problem by M. B. Nathanson [1], concerning simultaneous systems of representatives for two families of finite sets.

1. Introduction

Let \(\mathcal{S} = \{S_i\} \) be a family of nonempty sets. The set \(X \) is a system of representatives for \(\mathcal{S} \) if \(X \cap S_i \neq \emptyset \) for every \(S_i \) in \(\mathcal{S} \). If \(X \) is a system of representatives for \(\mathcal{S} \) but no proper subset of \(X \) is a system of representatives for \(\mathcal{S} \), then \(X \) is called a minimal system of representatives for \(\mathcal{S} \). By \(D(\mathcal{S}) \) we denote the number of minimal systems of representatives for \(\mathcal{S} \). Let \(|S| \) denote the cardinality of the set \(S \). If \(\mathcal{S} \) consists of \(s \) pairwise disjoint sets \(S_i \) with \(|S_i| = h \) for all \(i \), then \(D(\mathcal{S}) = h^s \).

Let \(\mathcal{S} = \{S_i\} \) and \(\mathcal{T} = \{T_j\} \) be two families of nonempty sets. A set \(X \) is called a simultaneous system of representatives for \(\mathcal{S} \) and \(\mathcal{T} \) if \(X \) is a minimal system of representatives for \(\mathcal{S} \) and \(X \) is also a system of representatives for \(\mathcal{T} \). \(N(\mathcal{S}, \mathcal{T}) \) denotes the number of the simultaneous systems of representatives for \(\mathcal{S} \) and \(\mathcal{T} \). The study of the numbers \(D(\mathcal{S}) \) and \(N(\mathcal{S}, \mathcal{T}) \) could be usefully applied to investigate minimal asymptotic bases in additive number theory [2].

In 1985, Nathanson [1] asked the following question:

Let \(h \geq 2 \) and \(k \geq 1 \). Does there exist a real number \(\mu = \mu(h,k) \in (0,1) \) such that

\[
N(\mathcal{S}, \mathcal{T}) \leq D(\mathcal{S}) \mu^l
\]

holds for any families \(\mathcal{S} \) and \(\mathcal{T} \) of sets satisfying the following properties?

(i) \(\mathcal{S} = \{S_i\} \) is a family of \(s \) nonempty, distinct sets \(S_i \) with \(|S_i| \leq h \) for all \(i \);

(ii) \(\mathcal{T} = \{T_j\} \) is a family of \(t \) nonempty, pairwise disjoint sets \(T_j \) with \(|T_j| \leq k \) for all \(j \);

(iii) \(S_i \) is not a subset of \(T_j \) for all \(i \) and \(j \).

Received by the editors June 24, 1988 and, in revised form, February 10, 1989.

1980 Mathematics Subject Classification (1985 Revision). Primary 05A05; Secondary 11B13.
In this paper, it is proved that no such real number μ exists for any $h \geq 2$ and any $k \geq 1$. Adding some further restriction on S, we prove that such μ exists in a special case.

2. Main results

Theorem 1. Let $h \geq 2$ and $k \geq 1$. For any real number $\mu \in (0, 1)$, there exist two families of sets

$$\mathcal{S} = \{S_i; i = 1, \ldots, s\} \text{ and } \mathcal{T} = \{T_j; j = 1, \ldots, t\}$$

satisfying the following properties:

(i) $0 < |S_i| \leq h$ for all i;
(ii) $0 < |T_j| \leq k$ for all j;
(iii) $T_j \cap T_j' = \emptyset$ for all $j \neq j'$;
(iv) S_i is not contained in T_j for all i and j;
(v) $N(\mathcal{S}, \mathcal{T}) > D(\mathcal{S})\mu^t$.

Proof. Let μ be any real number so that $0 < \mu < 1$. Let t be an integer such that $\mu^t < 1/h$, and let $s = tk$. Let $a_1, \ldots, a_{h-1}, b_1, \ldots, b_s$ be $h - 1 + s$ different elements. Define

$$S_i = \{a_1, \ldots, a_{h-1}, b_i\}, \quad T_j = \{b_{(j-1)k+1}, \ldots, b_{jk}\}$$

for $i = 1, 2, \ldots, s$ and $j = 1, 2, \ldots, t$. Let

$$\mathcal{S} = \{S_i; i = 1, 2, \ldots, s\}, \quad \mathcal{T} = \{T_j; j = 1, 2, \ldots, t\}$$

It is clear that

$$N(\mathcal{S}, \mathcal{T}) = 1, \quad D(\mathcal{S}) = h - 1 + 1 = h.$$

Therefore we have

$$N(\mathcal{S}, \mathcal{T}) = 1 > h\mu^t = D(\mathcal{S})\mu^t,$$

which proves the theorem.

Theorem 1 means that the answer to the question is negative for any $h \geq 2$ and $k \geq 1$. However, we have the following result:

Theorem 2. Let $h \geq 2$. Suppose

(i) $\mathcal{S} = \{S_i\}$ is a family of nonempty, distinct sets S_i with $|S_i| \leq h$ for all i;
(ii) Every S_i intersects at most one S_j in \mathcal{S} other than S_i itself;
(iii) $\mathcal{T} = \{T_j\}$ is a family of t sets T_j with $T_j = \{a_j\}$ for all j, where the a_j's are distinct elements;
(iv) S_i is not contained in T_j for any i and j.
Then

\[N(\mathcal{S}, \mathcal{F}) \leq D(\mathcal{S})(1 - 1/h)^{(t-1)/2}. \]

Proof. By induction on \(t \) for any fixed \(s \). If \(t = 0 \), then

\[N(\mathcal{S}, \mathcal{F}) = D(\mathcal{S}), \]

hence (1) holds for \(t = 0 \) and any \(s \). Let \(t \geq 1 \). Assume that (1) holds for any \(s \) and any \(t' < t \).

Let

\[\mathcal{S} = \{ S_i : i = 1, 2, \ldots, s \} \quad \text{and} \quad \mathcal{F} = \{ T_j : j = 1, 2, \ldots, t \} \]

be two families of sets satisfying the conditions (i)-(iv). If there exists some \(T_j = \{ a_j \} \) such that \(a_j \in S_i \) for all \(i \), then \(N(\mathcal{S}, \mathcal{F}) = 0 \), hence (1) holds for \(t \) and any \(s \). Now we assume that

\[S = \bigcup_{i=1}^{s} S_i \supseteq \{ a_1, \ldots, a_t \}. \]

We consider \(T_t = \{ a_t \} \). Then the following three cases may occur.

Case I. There exists an \(i' \) such that \(a_t \in S_{i'} \), where \(S_{i'} \cap S_i = \emptyset \) for all \(i \neq i' \). \(S_{i'} \not\subseteq T_t \) implies that \(|S_{i'}| \geq 2 \). It is readily verified that

\[\mathcal{S}' = \mathcal{S} \setminus \{ S_{i'} \} \quad \text{and} \quad \mathcal{F}' = \{ T_j : j = 1, \ldots, t - 1 \} \]

satisfy the conditions (i)-(iv), and

\[D(\mathcal{S}) = |S_{i'}|D(\mathcal{S}'). \]

If \(X \) is a simultaneous system of representatives for \(\mathcal{S} \) and \(\mathcal{F} \), then \(X' = X \setminus \{ a_t \} \) is a simultaneous system of representatives for \(\mathcal{S}' \) and \(\mathcal{F}' \). Conversely, if \(X' \) is a simultaneous system of representatives for \(\mathcal{S}' \) and \(\mathcal{F}' \), then \(X = X' \cup \{ a_t \} \) is a simultaneous system of representatives for \(\mathcal{S} \) and \(\mathcal{F} \). Therefore

\[N(\mathcal{S}, \mathcal{F}) = N(\mathcal{S}', \mathcal{F}') \leq D(\mathcal{S}')(1 - 1/h)^{(t-1)/2} \]
\[= (1/|S_{i'}|)D(\mathcal{S})(1 - 1/h)^{(t-1)/2} \]
\[\leq \frac{1}{2}D(\mathcal{S})(1 - 1/h)^{(t-1)/2} \]
\[< D(\mathcal{S})(1 - 1/h)^{t/2}. \]

Case II. There exists an \(i' \) such that \(a_t \in S_{i'} \cap S_{i''} \) for some \(i'' \). It follows from (ii) that

\[(S_{i'} \cap S_{i''}) \cap S_i = \emptyset \]

for any \(i \neq i' \) and \(i \neq i'' \). Let

\[|S_{i'} \cap S_{i''}| = r, \quad |S_{i'} \setminus S_{i''}| = u, \quad |S_{i''} \setminus S_{i'}| = v. \]
Since $a_i \in S_{i'}/S_{i''}$, it is clear that if X is a simultaneous system of representatives for \mathcal{S}' and \mathcal{F}', then $X \setminus \{a_i\}$ is a simultaneous system of representatives for $\mathcal{S}' = \mathcal{S}' \setminus \{S_{i'}, S_{i''}\}$ and $\mathcal{F}' = \{T_j : j = 1, 2, \ldots, t - 1\}$.

Conversely, if X' is a simultaneous system of representatives for \mathcal{S}' and \mathcal{F}', then $X = X' \cup \{a_i\}$ is a simultaneous system of representatives for \mathcal{S} and \mathcal{F}. Hence

$$N(\mathcal{S}, \mathcal{F}) = N(\mathcal{S}', \mathcal{F}') .$$

It is clear that $D(\mathcal{S}) = (r + uv)D(\mathcal{S}')$. (iv) implies that $r + u \geq 2$ and $r + v \geq 2$, thus $1/(r + uv) \leq 1 - 1/h$. Therefore

$$N(\mathcal{S}, \mathcal{F}) = N(\mathcal{S}', \mathcal{F}') \leq D(\mathcal{S}')(1 - 1/h)^{(t-1)/2}$$

$$= \frac{1}{r + uv}D(\mathcal{S}')(1 - 1/h)^{(t-1)/2}$$

$$\leq (1 - 1/h)D(\mathcal{S}')(1 - 1/h)^{(t-1)/2}$$

$$< D(\mathcal{S}')(1 - 1/h)^{t/2} .$$

Case III. There exists an i' such that

$$a_i \in S_{i'} \setminus S_{i''} \quad \text{and} \quad S_{i'} \cap S_{i''} \neq \emptyset$$

for some $i'' \neq i'$. Let

$$|S_{i'} \cap S_{i''}| = r, \quad |S_{i'} \setminus S_{i''}| = u, \quad |S_{i''} \setminus S_{i'}| = v .$$

It is clear that if there are two sets T_j such that $T_j \subseteq S_{i'} \setminus S_{i''}$, then $N(\mathcal{S}, \mathcal{F}) = 0$, hence (1) holds. If there exists exactly one $T_j = \{a_j\}$ such that $a_j \in S_{i'} \setminus S_{i''}$, then any simultaneous system X of representatives for \mathcal{S} and \mathcal{F} contains a_i and a_j. Hence X is a simultaneous system of representatives for \mathcal{S} and \mathcal{F} if and only if $X \setminus \{a_i, a_j\}$ is a simultaneous system of representatives for $\mathcal{S}' = \mathcal{S}' \setminus \{S_{i'}, S_{i''}\}$ and $\mathcal{F}' = \mathcal{F}' \setminus \{T_j, T_j\}$.

It is easily seen that

$$D(\mathcal{S}) = (r + uv)D(\mathcal{S}') .$$

Noticing that $r + uv \geq 2$, we have

$$N(\mathcal{S}, \mathcal{F}) = N(\mathcal{S}', \mathcal{F}') \leq D(\mathcal{S}')(1 - 1/h)^{(t-2)/2}$$

$$= \frac{1}{r + uv}D(\mathcal{S}')(1 - 1/h)^{(t-2)/2}$$

$$\leq \frac{1}{2}D(\mathcal{S}')(1 - 1/h)^{(t-2)/2}$$

$$= D(\mathcal{S}')(1 - 1/h)^{t/2} .$$

If there does not exist T_j such that $a_j \in S_{i'} \setminus S_{i''}$, i.e., if $(S_{i'} \setminus S_{i''}) \cap T_j = \emptyset$ for all j, then any simultaneous system X of representatives for \mathcal{S} and \mathcal{F}
contains \(a_i \) and an element \(x \) of \(S_i \setminus S_{i'} \), hence \(X \setminus \{a_i, x\} \) is a simultaneous system of representatives for

\[
\mathcal{S}' = \{S_i \setminus S_j \setminus S_{i'} : j = 1, 2, \ldots, t - 1\}.
\]

Conversely, if \(X' \) is a simultaneous system of representatives for \(\mathcal{S}' \) and \(\mathcal{T}' \), then \(X = X' \cup \{a_i, x\} \) is a simultaneous system of representatives for \(\mathcal{S}' \) and \(\mathcal{T}' \) for any \(x \) in \(S_i \setminus S_{i'} \). It follows the fact that \(r \geq 1, 0 \leq u \leq h - 1 \) and \(v \geq 1 \) that

\[
\frac{v}{r + uv} \leq 1 - \frac{1}{h}.
\]

Therefore

\[
N(\mathcal{S}, \mathcal{T}) = |S_i \setminus S_{i'}|N(\mathcal{S}', \mathcal{T}') \\
\leq V D(\mathcal{S}') (1 - 1/h)^{(t-1)/2} \\
= \frac{v}{r + uv} D(\mathcal{S}) (1 - 1/h)^{(t-1)/2} \\
\leq (1 - 1/h) D(\mathcal{S}) (1 - 1/h)^{(t-1)/2} \\
< D(\mathcal{S}) (1 - 1/h)^{t/2}.
\]

This completes the proof.

References

Department of Mathematics, Graduate School and University Center, The City University of New York, New York, New York 10036