ON SUPERPOSITION OF FUNCTIONS OF BOUNDED φ-VARIATION

FRANCISZEK PRUS-WIŚNIOWSKI

(Communicated by Daniel Mauldin)

Abstract. J. Ciemnoczolowski and W. Orlicz in [1] have obtained some results concerning superpositions of functions of bounded φ-variation. In this note we show that the assumption in Theorem 1 of [1] that ψ satisfies Δ_2 condition may be dropped. Moreover, Theorem 2.B of [1] is extended to a stronger version.

A function $\varphi : (0, \infty) \to (0, \infty)$ is called a φ-function if it is continuous, nondecreasing and such that $\varphi(0) = 0$, $\varphi(u) > 0$ for $u > 0$ and $\varphi(u) \to \infty$ for $u \to \infty$. A φ-function φ satisfies condition Δ_2 for small u if $\limsup \varphi(2u)/\varphi(u) < \infty$ for $u \to 0^+$. We denote by X the vector space of real functions defined on a closed interval $\langle a, b \rangle$ which vanish at a. For $x \in X$, we denote by $\text{osc}(x; \langle a, b \rangle)$ the oscillation of x on $\langle a, b \rangle$.

Let φ be a φ-function and A be a subset of real numbers. A finite subset π of A with the natural order we will call a partition of A. In general, we will write a non-empty partition π of A in form of an increasing finite sequence $(t_i)_{i=1}^n$. For a real function x defined on A and for a partition π of A we define

$$\text{var}_\varphi(x; \pi) = \begin{cases}
0 & \text{if } \text{card } \pi \leq 1 \\
\sum_{i=1}^{n-1} \varphi(|x(t_{i+1}) - x(t_i)|) & \text{if } \text{card } \pi \geq 2
\end{cases}$$

The value $\text{var}_\varphi(x; A) = \sup_\pi \text{var}_\varphi(x; \pi)$, where the supremum is taken over all partitions of A, is called a φ-variation of x on A. If the φ-variation of x is finite then we say x is of bounded φ-variation. It is easy to see that if A is a closed interval $\langle a, b \rangle$ then the above definition of φ-variation of x on A is equivalent to the classical one ([4], p. 582), which was used in [1]. The class of all functions $x \in X$ of bounded φ-variation is denoted by $V_\varphi(\langle a, b \rangle)$.

J. Ciemnoczolowski and W. Orlicz have stated in [1] the following theorem concerning superpositions of functions of bounded φ-variation.

Received by the editors May 24, 1988 and, in revised form, July 13, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 26A45; Secondary 26A16.

Key words and phrases. Function of bounded φ-variation, composition, generalized Lipschitz condition.
Theorem ([1], Theorem 1). Let \(\varphi \) be an arbitrary \(\varphi \)-function, \(\psi \) a \(\varphi \)-function satisfying \(\Delta_2 \) for small \(u \). Let \(F_n \) be real functions on \((-\infty, \infty)\), \(F_n(0) = 0 \), \(n = 1, 2, \ldots \). Then the following are equivalent:

(a) \(\sup_n \varphi(F_n(x);(a,b)) < \infty \) for \(x \in V_{\varphi}(a,b) \);

(b) for every \(r > 0 \) there exists a constant \(C_r > 0 \) such that the inequality
\(\psi(|F_n(u_1) - F_n(u_2)|) \leq C_r \varphi(|u_1 - u_2|) \) holds for \(u_1, u_2 \in (-r,r), \ n = 1, 2, \ldots \).

We will show that the assumption \(\psi \) satisfies condition \(\Delta_2 \) for small \(u \) may be dropped. Namely, one has

Theorem 1. Let \((F_n) \) be a sequence of real functions defined on \((-\infty, \infty)\) and \(F_n(0) = 0 \) for \(n = 1, 2, \ldots \). For every pair \(\varphi, \psi \) of \(\varphi \)-functions the following statements are equivalent:

(i) For every sequence \((x_n) \) of functions of \(X \) if \(\sup_n \varphi(x_n; (a,b)) < \infty \) then \(\sup_n \varphi(F_n(x_n); (a,b)) < \infty \).

(ii) If \(x \in V_{\varphi}(a,b) \) then \(\sup_n \varphi(F_n(x); (a,b)) < \infty \).

(iii) For every \(r > 0 \) there exists a constant \(C_r > 0 \) such that the inequality
\(\psi(|F_n(u_1) - F_n(u_2)|) \leq C_r \varphi(|u_1 - u_2|) \) holds for \(u_1, u_2 \in (-r,r), \ n = 1, 2, \ldots \).

Proof. The implication (i) \(\Rightarrow \) (ii) is obvious.

(iii) \(\Rightarrow \) (i). If \(\sup_n \varphi(x_n; (a,b)) \) is finite then \(r = \sup_n \text{osc}(x_n; (a,b)) \) is finite and by (iii)
\[\sup_n \varphi(F_n(x_n); (a,b)) \leq C_r \sup_n \varphi(x_n; (a,b)) < \infty. \]

(ii) \(\Rightarrow \) (iii). Assume (ii) holds. Then for every \(r = 1, 2, \ldots \) the functions \(F_n \) are uniformly bounded in common in \((-r,r)\) (see [1], proof of Theorem 1). If (iii) does not hold then there exist an integer \(r > 0 \), a nondecreasing sequence \((n_i) \) of indices, subintervals \((u_i, v_i) \) of \((-r,r)\) such that
\[d_i = \frac{\psi(|F_{n_i}(v_i) - F_{n_i}(u_i)|)}{\varphi(v_i - u_i)} \to \infty. \]

Since \(F_{n_i} \) are uniformly bounded in common in \((-r,r)\), we have \(v_i - u_i \to 0 \). Without loss of generality we may assume that sequences \((u_i) \) and \((v_i) \) are convergent to a point \(w \) of \((-r,r)\). Passing, if necessary, to a partial sequence, we state that one of the following cases holds:

(A) \(u_i \geq w \) for all \(i \);

(B) \(v_i \leq w \) for all \(i \);

(C) \(u_i \leq u_{i+1} < w < v_{i+1} \leq v_i \) for all \(i \).

If (A) holds then as in ([1], proof of Theorem 1) we construct a function \(x \in V_{\varphi}(a,b) \) such that \(\sup_n \varphi(F_n(x); (a,b)) = \infty \). If (B) holds then, setting \(G_n(u) = F_n(-u) \) for \(u \in (-\infty, \infty) \) and \(n = 1, 2, \ldots \), the case (A) holds for \(G_n \). Therefore, there exists a function \(x \in V_{\varphi}(a,b) \) such that\[\sup_n \varphi(F_n(x); (a,b)) = \sup_n \varphi(G_n(x); (a,b)) = \infty. \]
If (C) holds then there exists an increasing sequence \(i_j \) of positive integers such that \(\varphi(v_{i_j} - u_{i_j}) \leq 2^{-j-2} \) and \(d_{i_j} \geq 2 \cdot 4^j \) for \(j = 1, 2, \ldots \). We set

\[
s_j = \min\{s \in \{1, 2, \ldots\} : (2s - 1)\varphi(v_{i_j} - u_{i_j}) \geq 2^{-j-1}\},
\]

\[
m_0 = 0, \quad m_j = \sum_{k=1}^{j} 2s_k \quad \text{for} \quad j = 1, 2, \ldots.
\]

Given a decreasing sequence \((t_k) \) of points of \((a, b) \) convergent to \(a \) with \(t_1 = b \) and setting \(x(a) = 0 \) and for \(j = 1, 2, \ldots; k = m_{j-1} + 1, \ldots, m_j; t \in (t_{k+1}, t_k) \)

\[x(t) = \begin{cases} v_{i_j} & \text{for odd } k \\ u_{i_j} & \text{for even } k \end{cases},\]

we obtain a regulated function \(x \in X \).

Now, we shall prove that \(x \in V_\varphi(a, b) \). By ([3], Lemma 1.1) it is enough to show that \(\varphi_x(x; (a, b)) < \infty \). Observe that for every \(\varphi \)-function \(x \) and every function \(F: (-\infty, \infty) \rightarrow (-\infty, \infty) \) we have

(a) \(\varphi_x(F(x); (t_{1+m_j}, t_{1+m_{j-1}})) = (2s_j - 1)\chi(|F(v_{i_j}) - F(u_{i_j})|) \)

for \(j = 1, 2, \ldots, \)

(b) \(\varphi_x(x; (t_{1+m_k}, b)) = \sum_{j=1}^{k} \varphi_x(x; (t_{1+m_j}, t_{1+m_{j-1}})) \\
+ \sum_{j=1}^{k-1} \varphi(v_{i_{j+1}} - u_{i_j}) \quad \text{for} \quad k = 1, 2, \ldots. \)

Thus, for a partition \(\pi = (r_i)_{i=1}^n \) of \((a, b) \) if \(t_{1+m_k} < r_1 \) then

\[
\varphi_x(x; \pi) \leq \varphi_x(x; (t_{1+m_k}, b)) \\
\leq \sum_j (2s_j - 1)\varphi(v_{i_j} - u_{i_j}) + \sum_j \varphi(v_{i_{j+1}} - u_{i_j}) \\
\leq \sum_j 2^{-j} + \sum_j \varphi(v_{i_j} - u_{i_j}) \leq \frac{5}{4}.
\]

Therefore \(x \in V_\varphi(a, b) \).

For \(j = 1, 2, \ldots, \) by (a) we have

\[
\varphi_x(F_{n_{i_j}}(x); (a, b)) \geq \varphi_x(F_{n_{i_j}}(x); (t_{1+m_j}, t_{1+m_{j-1}})) \\
= (2s_j - 1)\varphi(|F_{n_{i_j}}(v_{i_j}) - F_{n_{i_j}}(u_{i_j})|) \\
\geq (2s_j - 1) \cdot 2 \cdot 4^j \varphi(v_{i_j} - u_{i_j}) \geq 2^j.
\]

Thus \(\sup_n \varphi_x(F_n(x); (a, b)) = \infty \) and we get a contradiction. \(\square \)
If we omit the assumption that ψ satisfies the Δ_2 condition then all consequences of ([1], Theorem 1) remain true, except Theorem 2.B.

For a φ-function φ and a real function F defined on $(-\infty, \infty)$ we will write $F \in \text{GL}_\varphi$ if $F(0) = 0$ and F satisfies the following generalized Lipschitz condition: for every $k > 0$ there exists a constant $C_k > 0$ such that $\varphi(|F(u) - F(v)|) \leq C_k \varphi(|u - v|)$ for $u, v \in (-k, k)$. It is easy to see that functions from GL_φ are continuous. If $\varphi(u) = u$ then we will write GL instead GL_φ. Using this notation the Theorem 2.A of [1] may be written as follows: $F(V_\varphi(a, b)) \subset V_\varphi(a, b)$ iff $F \in \text{GL}_\varphi$.

J. Ciemnoczolowski and W. Orlicz have formulated in [1] a sufficient condition for the equality $\text{GL}_\varphi = \text{GL}$. Namely, they have proved the following

Theorem ([1], Theorem 2.B). Let φ be a strictly increasing φ-function such that φ and φ^{-1} satisfy condition Δ_2 for small u. Then $\text{GL}_\varphi = \text{GL}$.

Theorems 2 and 3 jointly allow to formulate the necessary and sufficient condition for the equality $\text{GL}_\varphi = \text{GL}$.

Theorem 2. The inclusion $\text{GL}_\varphi \subset \text{GL}$ holds if and only if φ satisfies the condition

\[(E)\; \text{for every } c > 0 \text{ there exists a number } r > 0 \text{ such that} \limsup_{u \to 0^+} \frac{\varphi(ru)}{\varphi(u)} > c.\]

To prove this theorem we need a simple lemma.

Lemma. Let F be a real function defined on (a, b). Then for every positive integer n there exist points s, t of (a, b) such that

(1) $t - s = \frac{b - a}{n}$

and

(2) $\frac{|F(t) - F(s)|}{t - s} \geq \frac{|F(b) - F(a)|}{b - a}$.

Proof. If for some integer $n > 0$ and every pair s, t of points of (a, b), satisfying (1), the inequality

$$\frac{|F(t) - F(s)|}{t - s} < \frac{|F(b) - F(a)|}{b - a}$$

holds, then setting $s_k = a + (k - 1)(b - a)/n$ and $t_k = a + k(b - a)/n$ for $k = 1, \ldots, n$, we have

$$|F(b) - F(a)| \leq \sum_{k=1}^n |F(t_k) - F(s_k)|$$

$$< \frac{|F(b) - F(a)|}{b - a} \sum_{k=1}^n (t_k - s_k) = |F(b) - F(a)|$$

and we get a contradiction. \square
Proof of Theorem 2. First, suppose that ϕ satisfies the condition (E) and that $F \in \text{GL}_\phi \setminus \text{GL}$. Let m be a positive number such that for every $k > 0$ there exists a subinterval (u_k, v_k) of $(-m, m)$ such that $|F(v_k) - F(u_k)| \geq k(v_k - u_k)$. Let $C > 0$ be such that $\phi(|F(u) - F(v)|) \leq C\phi(|u - v|)$ for $u, v \in (-m, m)$.

For some $r > 0$ we have

$$\limsup_{u \to 0^+} \frac{\phi(ru)}{\phi(u)} > C + 1$$

and there exists a subinterval (u, v) of $(-m, m)$ such that $|F(v) - F(u)| \geq (r + 1)(v - u)$. Since F is continuous, it follows that there exists an $\epsilon \in (0, v - u)$ such that

$$(+) \quad |F(v) - F(s)| \geq r(v - s) \quad \text{for} \quad s \in (u, u + \epsilon).$$

Choosing a number $w \in (0, \epsilon)$ so that

$$(++) \quad \phi(rw) > (C + 1)\phi(w),$$

we have $v - lw \in (u, u + \epsilon)$ for some integer $l > 0$. Thus, by $(+)$ $|F(v) - F(v - lw)| \geq rlw$ and therefore, by our Lemma there exists a subinterval (v', v') of $(v - lw, v)$ such that $v' - u' = w$ and $|F(v') - F(u')| \geq r(v' - u')$. Thus,

$$\phi(rw) = \phi(r(v' - u')) \leq \phi(|F(v') - F(u')|) \leq C\phi(v' - u') < (C + 1)\phi(w),$$

which contradicts $(++)$. So if ϕ satisfies the condition (E) then $\text{GL}_\phi \subset \text{GL}$.

Conversely, suppose that ϕ does not satisfy (E). Then there exists a constant $c > 1$ such that for every $n = 1, 2, \ldots$ there exists a number $v_n > 0$ such that $\phi((n + 1)u) \leq c\phi(u)$ for $u \in (0, v_n)$. For a sequence (u_n) of positive numbers such that $u_1 \leq 1$, $u_n < v_n$ and $2(n + 1)u_{n+1} < nu_n$ for $n = 1, 2, \ldots$, the series $\sum_n (-1)^n nu_n$ is convergent. Now, we define a real function on $(-\infty, \infty)$, setting

$$t_n = -\sum_{i=n}^{\infty} u_i \quad \text{for} \quad n = 1, 2, \ldots;$$

$$F(t) = 0 \quad \text{for} \quad t \geq 0; \quad F(t) = \sum_n (-1)^n nu_n \quad \text{for} \quad t < t_1;$$

$$F(t_n) = \sum_{i=n}^{\infty} (-1)^i iu_i \quad \text{for} \quad n = 1, 2, \ldots.$$

Finally, we define F to be a linear function on each (t_n, t_{n+1}). Observe that for every integer $n > 0$ and every $u \in (u_{n+1}, u_n)$ we have $|F(d + u) - F(d)| \leq (n + 1)u_{n+1}$ for $d \geq t_{n+1}$ and $|F(d + u) - F(d)| \leq nu$ for $d < t_{n+1}$. Hence for every real number d

$$(++) \quad |F(d + u) - F(d)| \leq (n + 1)u \quad \text{for} \quad u \in (u_{n+1}, u_n).$$
More, observe that for \(u \geq u_1 \) and for every real number \(d \)

\[
|F(d + u) - F(d)| \leq u_1.
\]

Given two different real numbers \(w, w' \), if \(|w - w'| \geq u_1 \) then by

\[
\varphi(F(w) - F(w')) \leq \varphi(u_1) \leq c\varphi(|w - w'|) \quad \text{if } |w - w'| \in (u_{n+1}, u_n)
\]

then by \((++)\)

\[
\varphi(|F(w) - F(w')|) \leq \varphi((n + 1)|w - w'|) \leq c\varphi(|w - w'|),
\]

because \(u_n < v_n \). We have proved that \(F \in GL_\varphi \). Finally, for \(n = 1, 2, \ldots \)

we have \(t_n \in (-2, 2) \) and

\[
\frac{|F(t_{n+1}) - F(t_n)|}{|t_{n+1} - t_n|} = \frac{n u_n}{u_n} = n.
\]

Thus \(F \not\in GL \). So if \(GL_\varphi \subset GL \) then \(\varphi \) satisfies the condition \((E) \).

\[\Box\]

Theorem 3. The inclusion \(GL \subset GL_\varphi \) holds if and only if \(\varphi \) satisfies the condition \(\Delta_2 \) for small \(u \).

Proof. First, assume that \(\varphi \) satisfies \(\Delta_2 \) for small \(u \) and \(F \in GL \). Given \(m > 0 \), there exists a constant \(C > 0 \) such that \(\varphi(|F(u) - F(v)|) \leq \varphi(C|u - v|) \)

for \(u, v \in (-m, m) \). Because \(\varphi \) satisfies \(\Delta_2 \) for small \(u \), there exists a constant \(K_m > 0 \) such that \(\varphi(Cw) \leq K_m \varphi(w) \) for \(0 \leq w \leq 2m \) (cf. [2], 1.02). Thus,

\[
\varphi(|F(u) - F(v)|) \leq K_m \varphi(|u - v|) \quad \text{for } u, v \in (-m, m).
\]

It follows that \(F \in GL_\varphi \).

Conversely, suppose that \(\varphi \) does not satisfy the condition \(\Delta_2 \) for small \(u \). Then

\[
\limsup_{u \to 0^+} \frac{\varphi(2u)}{\varphi(u)} = \infty.
\]

and it is easy to see that for \(F(u) = 2u \) we have \(F \in GL \) and \(F \not\in GL_\varphi \).

\[\Box\]

The following result is just exactly a generalization of Theorem 2.B of [1].

Corollary. The identity \(GL = GL_\varphi \) holds if and only if \(\varphi \) satisfies the conditions \((E) \) and \(\Delta_2 \) for small \(u \).

References

Institute of Mathematics, University of Szczecin, Ul. Wielkopolska 15, 70-451 Szczecin, Poland