Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Certain positive-definite kernels


Authors: Mina Ossiander and Edward C. Waymire
Journal: Proc. Amer. Math. Soc. 107 (1989), 487-492
MSC: Primary 60G60; Secondary 43A35, 60G15
DOI: https://doi.org/10.1090/S0002-9939-1989-1011824-X
MathSciNet review: 1011824
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In one way or another, the extension of the standard Brownian motion process $ \{ {B_t}:t \in [0,\infty )\} $ to a (Gaussian) random field $ \{ {B_t}:{\text{t}} \in {\mathbf{R}}_ + ^d\} $ involves a proof of the positive semi-definiteness of the kernel used to generalize $ \rho (s,t) = {\text{cov(}}{{\text{B}}_s}{\text{,}}{{\text{B}}_t}{\text{) = s}} \wedge t$ to multidimensional time. Simple direct analytical proofs are provided here for the cases of (i) the Lévy multiparameter Brownian motion, (ii) the Chentsov Brownian sheet, and (iii) the multiparameter fractional Brownian field.


References [Enhancements On Off] (What's this?)

  • [1] N. N. Chentsov, Weiner random fields depending on several parameters, Dokl. Akad. Nauk SSSR (N.S.) 106 (1956), 607-609. MR 0077824 (17:1101a)
  • [2] R. Gangolli, Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters, Ann. Inst. Henri Poincaré 3, Série B, (1967), 121-225. MR 0215331 (35:6172)
  • [3] P. Lévy, Le mouvement Brownien plan, Amer. J. Math. 62 (1940), 487-550. MR 0002734 (2:107g)
  • [4] -, Sur le mouvement brownien dépendant de plusieurs parametres, C. R. Acad. Sci. Paris 220 (1945), 420-422. MR 0013265 (7:130d)
  • [5] -, Processus stochastiques et mouvement brownien, Gauthier Villars, Paris, 1948.
  • [6] B. B. Mandelbrot, Fonctions aléatoires pluri-temporelles poissonienne du cas brownien et fénéralisations, C. R. Acad. Sc. Paris 280A (1975), 1075-1078. MR 0388559 (52:9395)
  • [7] -, The fractal geometry of nature, W. H. Freeman and Co., San Francisco, 1982. MR 665254 (84h:00021)
  • [8] B. B. Mandelbrot and J. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Review 10 (1968), 422-437. MR 0242239 (39:3572)
  • [9] M. Ossiander, Weak convergence and a law of the iterated logarithm for partial-sum processes indexed by points in a metric space, University of Washington, Ph.D. dissertation, 1984.
  • [10] M. Ossiander and R. Pyke, Lévy's Brownian motion as a set-indexed process and a related central limit theorem, Stoch. Process. Appl. 21 (1985), 133-145. MR 834993 (87k:60139)
  • [11] G. Pflug, A statistically important Gaussian process, Stoch. Process. Appl. 13 (1982), 45-57. MR 662804 (83i:62156)
  • [12] M. Reed and B. Simon, Methods of modern mathematical physics, vol. 1, Academic Press, New York, 1980. MR 751959 (85e:46002)
  • [13] I. J. Schoenberg, Metric spaces and positive definite functions, Trans. Amer. Math. Soc. 44 (1938), 522-536. MR 1501980
  • [14] E. Wong and M. Zakai, Martingales and stochastic integrals for processes with a multidimensional parameter, Z. Wahrsch. verw. Gebiete 29 (1974), 109-122. MR 0370758 (51:6983)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60G60, 43A35, 60G15

Retrieve articles in all journals with MSC: 60G60, 43A35, 60G15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-1011824-X
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society