Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Global preservation of nodal structure in coupled systems of nonlinear Sturm-Liouville boundary value problems


Author: Robert Stephen Cantrell
Journal: Proc. Amer. Math. Soc. 107 (1989), 633-644
MSC: Primary 34B25; Secondary 58F19, 92A15
DOI: https://doi.org/10.1090/S0002-9939-1989-0975633-X
MathSciNet review: 975633
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we examine the solution set to the coupled system ($ *$)

$\displaystyle \left\{ {_{ - ({p_2}(x)\upsilon '(x))' + {q_2}(x)\upsilon (x) = \... ...(x))' + {q_1}(x)u(x) = \lambda u(x) + u(x) \cdot f(u(x),\upsilon (x))}} \right.$

where $ \lambda ,\mu \in R,x \in [a,b]$, and the system ($ *$) is subject to zero Dirichlet boundary data on $ u$ and $ \upsilon $. We determine conditions on $ f$ and $ g$ which permit us to assert the existence of continua of solutions to ($ *$) characterized by $ u$ having $ n - 1$ simple zeros in $ (a,b),\upsilon $ having $ m - 1$ simple zeros in $ (a,b)$, where $ n$ and $ m$ are positive but not necessarily equal integers. Moreover, we also determine conditions under which these continua link solutions to ($ *$) of the form $ (\lambda ,\mu ,u,0)$ with $ u$ having $ n - 1$ simple zeros in $ (a,b)$ to solutions of ($ *$) of the form $ (\lambda ,\mu ,0,\upsilon )$ with $ \upsilon $ having $ m - 1$ simple zeros in $ (a,b)$.

References [Enhancements On Off] (What's this?)

  • [1] J. C. Alexander and S. S. Antman, Global and local behavior of bifurcating multidimensional continua of solutions for multiparameter nonlinear eigenvalue problems, Arch. Rational Mech. Anal. 76 (1981), 339-354. MR 628173 (82k:58030)
  • [2] J. Blat and K. J. Brown, Bifurcation of steady-state solutions in prederator-prey and competition systems, Proc. Roy. Soc. Edinburgh Sect. A 97 (1984), 21-34. MR 751174 (85k:92053)
  • [3] R. S. Cantrell, Global higher bifurcations in coupled systems of nonlinear eigenvalue problems, Proc. Roy. Soc. Edinburgh Sect. A 106 (1987), 113-120. MR 899945 (88h:92035)
  • [4] -, A switch in nodal structure in coupled systems of nonlinear Sturm-Liouville boundary value problems, Rocky Mountain J. Math., (to appear). MR 1138148 (93d:34032)
  • [5] R. S. Cantrell and C. Cosner, On the steady-state problem for the Volterra-Lotka competition model with diffusion, Houston J. Math. 13 (1987), 337-352. MR 916141 (89d:92052)
  • [6] M. G. Crandall and P. H. Rabinowitz, Nonlinear Sturm-Liouville eigenvalue problems and topological degree, J. Math. Mech. 19 (1970), 1083-1102. MR 0259232 (41:3874)
  • [7] M. H. Protter and H. F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs, N.J., 1967. MR 0219861 (36:2935)
  • [8] P. H. Rabinowitz, Some aspects of nonlinear eigenvalue problems, Rocky Mountain J. Math. 3 (1973), 161-202. MR 0320850 (47:9383)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34B25, 58F19, 92A15

Retrieve articles in all journals with MSC: 34B25, 58F19, 92A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0975633-X
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society