THE TORUS LEMMA ON CALIBRATIONS, EXTENDED

FRANK MORGAN

(Communicated by Jonathan M. Rosenberg)

Abstract. The whole face $G(\varphi)$ of m-planes calibrated by a torus m-form φ is determined by the torus face $G_T(\varphi)$. Indeed, $G(\varphi)$ results from applying a new closure operation to $G_T(\varphi)$.

1. Introduction

Over the past ten years the theory of calibrations has illuminated the occurrence and structure of singularities in m-dimensional area-minimizing surfaces. This note gives an extension of a much-used lemma on calibrations, the Torus Lemma (cf. §3). Our observations bear on recent work of D. Nance [N, e.g. Corollary 3.8] and M. Messaoudene [Me].

For surveys on calibrations see [H1], [M1], [M2]. For basic concepts and definitions see [M3, §1, §2], [M4, Chapter 4], the original paper [HL], or the new text [H2].

2. Definitions

In addition to the standard dual Euclidean norms on the exterior algebra $\wedge^m \mathbb{R}^n$ and its dual $\wedge^m \mathbb{R}^n^*$, there is another important dual pair of norms, called mass and comass. The comass $\|\varphi\|^*$ of a form $\varphi \in \wedge^m \mathbb{R}^n$ is the maximum value of φ on the Grassmannian $G(m, \mathbb{R}^n)$ of oriented unit m-planes through 0 in \mathbb{R}^n:

$$\|\varphi\|^* = \max \{\langle \xi, \varphi \rangle : \xi \in G(m, \mathbb{R}^n)\}.$$

A form φ normalized to have comass 1 is called a calibration. The face $G(\varphi)$ of a calibration φ consists of its maximum points in the Grassmannian:

$$G(\varphi) = \{\xi \in G(m, \mathbb{R}^n) : \langle \xi, \varphi \rangle = 1\}.$$

Received by the editors October 5, 1988 and, in revised form, December 19, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 49F10; Secondary 52A20, 49F20.

Key words and phrases. Torus lemma, torus calibration, face of Grassmannian, mass decomposition.

This work was partially supported by a National Science Foundation Grant.
The mass is the dual norm on m-vectors ξ in $\bigwedge^m \mathbb{R}^n$:

$$
\|\xi\| = \max\{\langle \xi, \phi \rangle : \|\phi\|^* = 1\}
= \min\left\{ \sum a_j : \xi = \sum a_j \xi_j, \xi_j \in G(m, \mathbb{R}^n), a_j > 0 \right\}.
$$

A calibration ϕ for which the maximum of $\langle \xi, \phi \rangle$ is attained is said to calibrate ξ. An expression $\xi = \sum a_j \xi_j$ for which the minimum is attained is called a mass decomposition for ξ. A calibration ϕ calibrates $\xi = \sum a_j \xi_j$ if and only if all the ξ_j lie in the face $G(\phi)$.

In the case that $n = 2m$ and $\mathbb{R}^n = (\mathbb{R}^2)^m$ consider the m-dimensional torus

$$
T = (S^1)^m = (G(1, \mathbb{R}^2))^m \subset G(m, \mathbb{R}^2m) \subset \bigwedge^m \mathbb{R}^{2m}.
$$

The elements of T are called torus planes. Let T_s denote the span of T in $\bigwedge^m \mathbb{R}^{2m}$. The torus span T_s can also be described as the tensor product $T_s = \bigotimes_{i=1}^m \bigwedge^1 \mathbb{R}^2$. Elements of T_s are called torus m-vectors. Similarly the elements of the dualspace T^* are called torus forms. The intersection of the face $G(\phi)$ of any calibration ϕ with the torus T is called the torus face $G_T(\phi)$.

3. The Torus Lemma

The Torus Lemma ([M5, Lemma 4], cf. [DHM, §4]) says that a torus calibration attains its maximum value of 1 on the torus. Equivalently,

$$
\left\{ \phi \in T^*_s : \max_{\xi \in T} \langle \xi, \phi \rangle = 1 \right\} = \{ \phi \in T^*_s : \|\phi\|^* = 1 \}.
$$

We observe a few useful consequences.

1. The unit mass ball intersects the torus span in the convex hull of T.
2. A torus m-vector is calibrated by a torus calibration [Me, 4.4.2].
3. A torus m-vector has a mass decomposition in terms of torus m-planes. (This generalizes [Me, 5.2.8, 5.4.3].)
4. Let ϕ be a torus calibration. An m-plane ξ belongs to $G(\phi)$ if and only if its projection $P\xi$ onto the torus span T_s is a convex combination of $G_T(\phi)$.

Consequence (4) includes the new observation that the face $G(\phi)$ of a torus form ϕ is determined by the torus face $G_T(\phi)$. This fact is applied by D. Nance [N, e.g. Corollary 3.8]. Theorem 6 will exhibit this fact in another way.

The consequences follow immediately from (*) . For example, we will verify (4). Since ϕ is a torus calibration, $\phi(\xi) = \phi(P\xi)$. Clearly if $P\xi$ is a convex combination of $G_T(\phi)$, then $\phi(\xi) = \phi(P\xi) = 1$, so that $\xi \in G(\phi)$. On the other hand, suppose $\xi \in G(\phi)$, so that $\phi(P\xi) = \phi(\xi) = 1$. For any other torus calibration ϕ', $\phi'(P\xi) = \phi'(\xi) \leq 1$. It follows by elementary convex geometry from the characterization (*) of torus calibrations as

$$
\left\{ \phi \in T^*_s : \max_{\xi \in T} \langle \xi, \phi \rangle = 1 \right\}
$$

that $P\xi$ is a convex combination of $G_T(\phi)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
4. Definitions

We call $A \subset G(m, \mathbb{R}^n)$ a CP1 if for some orthonormal basis e_1, \ldots, e_n for \(\mathbb{R}^n\) and the complex structure \(Je_1 = e_3, Je_2 = e_4\) on \(\mathbb{R}^4 = \text{span}\{e_1, e_2, e_3, e_4\}\),

\[A = \{\text{the complex lines in } \mathbb{R}^4\} \wedge e_5 \wedge \cdots \wedge e_{m+2}.
\]

Let $B \subset G(m, \mathbb{R}^n)$. We define the CP1-closure $C(B)$ of B as the smallest subset of $G(m, \mathbb{R}^n)$ containing B such that whenever two points of a CP1 lie in $C(B)$, the whole CP1 lies in $C(B)$.

Proposition 5 ([HM, Corollary 4.7]). Let $G(\varphi)$ be a face of $G(m, \mathbb{R}^n)$. If two points of a CP1 lie in $G(\varphi)$, then the whole CP1 lies in $G(\varphi)$.

Theorem 6. Let $\varphi \in \mathbb{R}^{2m*}$ be a torus calibration. Then the face $G(\varphi)$ is the CP1-closure of the torus face $G_T(\varphi)$:

\[G(\varphi) = C(G_T(\varphi)).\]

Remarks. This theorem subsumes both the Torus Lemma, which just says that $G_T(\varphi) \neq \emptyset$, and our new observation that the entire face of a torus calibration is determined by its torus face (cf. §3).

Proof. By Proposition 5, $G(\varphi) \supset C(G_T(\varphi))$. We prove the opposite inclusion by induction on m. The result is trivial for $m = 1$. Suppose $\varphi \in \bigotimes_{j=1}^{m+1}(\mathbb{A}^1 \mathbb{R}^{2*r}) \subset (\mathbb{A}^1 \mathbb{R}^{2*r}) \otimes (\mathbb{A}^m \mathbb{R}^{2m*})$. Let $\xi \in G(\varphi)$. It is not hard to show ([HL, Lemma II.7.5]) that there are orthonormal bases e_1, e_2 for \mathbb{R}^2 and f_1, \ldots, f_{2m} for \mathbb{R}^{2m} and angles $\theta_1, \theta_2 \in [0, \pi/2]$ such that ξ takes the form

\[\xi = (\cos \theta_1, \sin \theta_1, f_1) \wedge (\cos \theta_2, \sin \theta_2, f_2) \wedge f_3 \wedge \cdots \wedge f_{m+1}.
\]

Since $\varphi \in \mathbb{A}^1 \mathbb{R}^{2*} \otimes \mathbb{A}^m \mathbb{R}^{2m*}$,

\[\varphi(\xi) = a \cos \theta_1 + b \sin \theta_2 \cos \theta_2 \leq \sqrt{a^2 \cos^2 \theta_1 + b^2 \sin^2 \theta_2} \leq \max\{|a|, |b|\} \leq 1,
\]

where

\[a = \langle e_1 \wedge f_2 \wedge \cdots \wedge f_{m+1}, \varphi \rangle,\]

\[b = \langle f_1 \wedge e_2 \wedge \cdots \wedge f_{m+1}, \varphi \rangle.
\]

Hence, equality holds. Unless $a = b = 1$, it follows that $\{\theta_1, \theta_2\} = \{0, \pi/2\}$ and ξ has a factor e_1 or e_2, say e_1. Thus $\xi = e_1 \wedge \zeta$, for some $\zeta \in G(m, \mathbb{R}^{2m})$. Since $e_1 \perp \varphi \in \bigotimes_{j=1}^{m+1} \mathbb{A}^1 \mathbb{R}^{2*r}$ and $\langle \zeta, e_1 \perp \varphi \rangle = \pm \langle e_1 \wedge \zeta, \varphi \rangle = \pm 1$, by induction $\pm \zeta$ lies in $C(G_T(e_1 \perp \varphi))$. Consequently $\xi = e_1 \wedge \zeta$ belongs to

\[\pm e_1 \wedge C(G_T(e_1 \perp \varphi)) \subset \pm C(e_1 \wedge G_T(e_1 \perp \varphi)) \subset C(G_T(\varphi))
\]
as desired.
If on the other hand $a = b = 1$, then $\theta_2 = \pi/2 - \theta_1$. Also, $e_1 \wedge f_2 \wedge \cdots \wedge f_{m+1}$ and $f_1 \wedge e_2 \wedge \cdots \wedge f_{m+1}$ both belong to $G(\varphi)$. As in the previous case, by induction both belong to $C(G_T(\varphi))$. In addition for the complex structure $Je_1 = f_2$, $Jf_1 = e_2$, both belong to the \mathbb{CP}^1.

$$A = \{\text{complex lines in span } \{e_1, f_2, e_2\} \wedge f_3 \wedge \cdots \wedge f_{m+1}\}.$$

Since $\theta_2 = \pi/2 - \theta_1$, ξ also belongs to A. Therefore $\xi \in C(G_T(\varphi))$, as desired.

References

[H2] ____, Spinors and calibrations, manuscript.

Department of Mathematics, Williams College, Williamstown, Massachusetts 01267