Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The torus lemma on calibrations, extended

Author: Frank Morgan
Journal: Proc. Amer. Math. Soc. 107 (1989), 675-678
MSC: Primary 49F22; Secondary 53C42
MathSciNet review: 975652
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The whole face $ G\left( \varphi \right)$ of $ m$-planes calibrated by a torus $ m$-form $ \varphi $ is determined by the torus face $ {G_T}\left( \varphi \right)$. Indeed, $ G\left( \varphi \right)$ results from applying a new closure operation to $ {G_T}\left( \varphi \right)$.

References [Enhancements On Off] (What's this?)

  • [DHM] J. Dadok, R. Harvey, and F. Morgan, Calibrations on $ {{\mathbf{R}}^8}$, Trans. Amer. Math. Soc. 307 (1988), 1-40. MR 936802 (89f:53089)
  • [H1] R. Harvey, Calibrated geometries, Proc. Int. Cong. Math., 1983. MR 804735 (87d:53123)
  • [H2] -, Spinors and calibrations, manuscript.
  • [HL] R. Harvey and H. B. Lawson, Jr., Calibrated geometries, Acta Math. 148 (1982), 47-157. MR 666108 (85i:53058)
  • [HM] R. Harvey and F. Morgan, The faces of the Grassmannian of $ 3$-planes in $ {{\mathbf{R}}^7}$, Inventiones Math. 83 (1986), 191-228. MR 818350 (87c:53128)
  • [Me] M. Messaoudene, The unit mass ball of three-vectors in $ {{\mathbf{R}}^6}$, Ph.D. Thesis, MIT, 1988.
  • [M1] F. Morgan, Area-minimizing surfaces, faces of Grassmannians, and calibrations, Amer. Math. Monthly 95 (1988), 813-822. MR 967342 (89m:53016)
  • [M2] -, Calibrations and new singularities in area-minimizing surfaces: a survey, Proc. Conf. Problemes Variationnels, Paris, 1988, preprint.
  • [M3] -, The exterior algebra $ {\Lambda ^k}{{\mathbf{R}}^n}$ and area minimization, Lin. Alg. and its Appl. 66 (1985), 1-28. MR 781292 (86i:53036)
  • [M4] -, Geometric measure theory: a beginner's guide, Academic Press, New York, 1988. MR 933756 (89f:49036)
  • [M5] -, On the singular structure of three-dimensional area-minimizing surfaces, Trans. Amer. Math. Soc. 276 (1983), 137-143. MR 684498 (84b:49053)
  • [N] D. Nance, A class of weakened special Lagrangian calibrations, Indiana U. Math. J., (to appear).

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 49F22, 53C42

Retrieve articles in all journals with MSC: 49F22, 53C42

Additional Information

Keywords: Torus lemma, torus calibration, face of Grassmannian, mass decomposition
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society