Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

The torus lemma on calibrations, extended


Author: Frank Morgan
Journal: Proc. Amer. Math. Soc. 107 (1989), 675-678
MSC: Primary 49F22; Secondary 53C42
DOI: https://doi.org/10.1090/S0002-9939-1989-0975652-3
MathSciNet review: 975652
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The whole face $ G\left( \varphi \right)$ of $ m$-planes calibrated by a torus $ m$-form $ \varphi $ is determined by the torus face $ {G_T}\left( \varphi \right)$. Indeed, $ G\left( \varphi \right)$ results from applying a new closure operation to $ {G_T}\left( \varphi \right)$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 49F22, 53C42

Retrieve articles in all journals with MSC: 49F22, 53C42


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0975652-3
Keywords: Torus lemma, torus calibration, face of Grassmannian, mass decomposition
Article copyright: © Copyright 1989 American Mathematical Society