On composition of four-symbol -codes and Hadamard matrices

Author:
C. H. Yang

Journal:
Proc. Amer. Math. Soc. **107** (1989), 763-776

MSC:
Primary 94B60; Secondary 05B20, 62K10

DOI:
https://doi.org/10.1090/S0002-9939-1989-0979054-5

MathSciNet review:
979054

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that key instruments for composition of four-symbol -codes are the Lagrange identity for polynomials, a certain type of quasisymmetric sequences (i.e., a set of normal or near normal sequences) and base sequences. The following is proved: If a set of base sequences for length and a set of normal (or near normal) sequences for length exist then four-symbol -codes of length can be composed by application of the Lagrange identity. Consequently a new infinite family of Hadamard matrices of order can be constructed, where is the order of Williamson matrices and . Other related topics are also discussed.

**[A]**S. S. Agaian,*Hadamard matrices and their applications*, Springer-Verlag, Berlin, 1985. MR**818740 (87k:05038)****[GS]**A. V. Geramita and J. Seberry,*Orthogonal designs*, Dekker, New York, 1979. MR**534614 (82a:05001)****[Go]**J. M. Goethals and J. J. Seidel,*A skew Hadamard matrix of order*36, J. Aust. Math. Soc.**11**(1970), 343-344. MR**0269527 (42:4422)****[G]**M. J. E. Golay,*Complementary series*, IRE Trans. Information Theory, IT-7 (1961), 82-87. MR**0125799 (23:A3096)****[H.]**M. Hall, Jr.,*Combinatorial theory*, 2nd ed., Wiley and Sons, New York, 1986. MR**840216 (87j:05001)****[HS]**M. Harwit and N. J. A. Sloane,*Hadamard transform optics*, Academic Press, New York, 1979.**[HW]**A. Hedayat and W. D. Wallis,*Hadamard matrices and their applications*, Ann. Math. Stat.**6**(1978), 1184-1238. MR**523759 (80e:05037)****[K]**C. Koukouvinos, S. Kounias and J. Seberry,*Further results on base sequences, disjoint complementary sequences*,*and the excess of Hadamard matrices*, (to appear).**[M]**A. C. Mukhopadyay,*Some infinite classes of Hadamard matrices*, J. Combin. Theory (A)**25**(1978), 128-141. MR**509438 (80c:05046)****[S]**E. Spence,*An infinite family of Williamson matrices*, J. Aust. Math. Soc. (A)**24**(1977), 252-256. MR**0505639 (58:21697)****[T1]**R. J. Turyn,*Hadamard matrices, Baumert-Hall units, four symbol sequences, pulse compression, and surface wave encodings*, J. Combin. Theory (A)**16**(1974), 313-333. MR**0345847 (49:10577)****[T2]**-, Personal communication, 1980.**[T3]**-,*An infinite class of Williamson matrices*, J. Combin. Theory (A)**12**(1972), 319-321. MR**0299503 (45:8551)****[W]**J. Seberry Wallis,*Construction of Williamson type matrices*, J. Linear and Multilinear Alg.**3**(1975), 197-207. MR**0396299 (53:167)****[Wi]**J. Williamson,*Hadamard's determinant theorem and the sum of four squares*, Duke Math. J.**11**(1944), 65-81. MR**0009590 (5:169g)****[Y1]**C. H. Yang,*A composition theorem for**-codes*, Proc. Amer. Math. Soc.**89**(1983), 375-378. MR**712655 (85i:94025)****[Y2]**-,*Lagrange identity for polynomials and**-codes of lengths**and*, Proc. Amer. Math. Soc.**88**(1983), 746-750. MR**702312 (85f:05034)****[Y3]**-,*Hadamard matrices and**-codes of length*, Proc. Amer. Math. Soc.**85**(1982),**[Y4]**-,*Hadamard matrices, finite sequences, and polynomials defined on the unit circle*, Math. Comp.**33**(1979), 688-693. MR**525685 (80i:05024)****[Y5]**-,*On Golay sequences and near normal sequences*, (to appear).

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
94B60,
05B20,
62K10

Retrieve articles in all journals with MSC: 94B60, 05B20, 62K10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0979054-5

Article copyright:
© Copyright 1989
American Mathematical Society