A generalized Hölder inequality and a generalized Szegő theorem

Authors:
Florin Avram and Lawrence Brown

Journal:
Proc. Amer. Math. Soc. **107** (1989), 687-695

MSC:
Primary 26D15

DOI:
https://doi.org/10.1090/S0002-9939-1989-0984781-X

MathSciNet review:
984781

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a limit theorem connected to graphs, which when the graph is a cycle reduces to Szego's theorem for the trace of a product of Toeplitz matrices. The main tool used is a Holder type inequality for multiple integrals of functions which are applied to variables satisfying linear dependency relations.

**[A]**F. Avram,*On bilinear forms in Gaussian random variables and Toeplitz matrices*, Probab. Theory Related Fields**79**(1988), no. 1, 37–45. MR**952991**, https://doi.org/10.1007/BF00319101**[A2]**-,*Asymptotics of sums with dependent indices and convergence to the Gaussian distribution*, preprint, 1987.**[BL]**Jöran Bergh and Jörgen Löfström,*Interpolation spaces. An introduction*, Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223. MR**0482275****[BM]**J. A. Bondy and U. S. R. Murty,*Graph theory with applications*, American Elsevier Publishing Co., Inc., New York, 1976. MR**0411988****[BP]**Victor Bryant and Hazel Perfect,*Independence theory in combinatorics*, Chapman & Hall, London-New York, 1980. An introductory account with applications to graphs and transversals; Chapman and Hall Mathematics Series. MR**604173****[D]**H. Dehling,*private communication*.**[F1]**Robert Fox and Murad S. Taqqu,*Noncentral limit theorems for quadratic forms in random variables having long-range dependence*, Ann. Probab.**13**(1985), no. 2, 428–446. MR**781415****[F2]**Robert Fox and Murad S. Taqqu,*Central limit theorems for quadratic forms in random variables having long-range dependence*, Probab. Theory Related Fields**74**(1987), no. 2, 213–240. MR**871252**, https://doi.org/10.1007/BF00569990**[GS]**Ulf Grenander and Gabor Szegö,*Toeplitz forms and their applications*, California Monographs in Mathematical Sciences, University of California Press, Berkeley-Los Angeles, 1958. MR**0094840****[G1]**L. Giraitis and D. Surgailis,*CLT and other limit theorems for functionals of Gaussian processes*, Z. Wahrsch. Verw. Gebiete**70**(1985), no. 2, 191–212. MR**799146**, https://doi.org/10.1007/BF02451428**[G2]**L. Giraitis and D. Surgailis,*Multivariate Appell polynomials and the central limit theorem*, Dependence in probability and statistics (Oberwolfach, 1985) Progr. Probab. Statist., vol. 11, Birkhäuser Boston, Boston, MA, 1986, pp. 21–71. MR**899984****[K]**Yitzhak Katznelson,*An introduction to harmonic analysis*, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR**0248482****[LZ]**J. H. Lowenstein and W. Zimmermann,*The power counting theorem for Feynman integrals with massless propagators*, Comm. Math. Phys.**44**(1975), no. 1, 73–86. MR**0411421****[LC]**W. A. Light and E. W. Cheney,*Approximation theory in tensor product spaces*, Lecture Notes in Mathematics, vol. 1169, Springer-Verlag, Berlin, 1985. MR**817984****[M]**Edward B. Manoukian,*Renormalization*, Pure and Applied Mathematics, vol. 106, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. MR**749231****[N]**N. Nakanishi,*Graph theory and Feynman integrals*, Gordon and Breach Science Publishers, New York, 1971.**[Wg]**Steven Weinberg,*High-energy behavior in quantum field-theory*, Phys. Rev. (2)**118**(1960), 838–849. MR**0116953****[W]**D. J. A. Welsh,*Matroid theory*, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. L. M. S. Monographs, No. 8. MR**0427112**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
26D15

Retrieve articles in all journals with MSC: 26D15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0984781-X

Keywords:
Generalized Hölder inequality,
power counting conditions,
graph sums,
polymatroid,
bond matroid

Article copyright:
© Copyright 1989
American Mathematical Society