Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A generalized Hölder inequality and a generalized Szegő theorem

Authors: Florin Avram and Lawrence Brown
Journal: Proc. Amer. Math. Soc. 107 (1989), 687-695
MSC: Primary 26D15
MathSciNet review: 984781
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a limit theorem connected to graphs, which when the graph is a cycle reduces to Szego's theorem for the trace of a product of Toeplitz matrices. The main tool used is a Holder type inequality for multiple integrals of functions which are applied to variables satisfying linear dependency relations.

References [Enhancements On Off] (What's this?)

  • [A] F. Avram, On bilinear forms in Gaussian random variables and Toeplitz matrices, Probab. Theory Related Fields 79 (1988), no. 1, 37–45. MR 952991, 10.1007/BF00319101
  • [A2] -, Asymptotics of sums with dependent indices and convergence to the Gaussian distribution, preprint, 1987.
  • [BL] Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223. MR 0482275
  • [BM] J. A. Bondy and U. S. R. Murty, Graph theory with applications, American Elsevier Publishing Co., Inc., New York, 1976. MR 0411988
  • [BP] Victor Bryant and Hazel Perfect, Independence theory in combinatorics, Chapman & Hall, London-New York, 1980. An introductory account with applications to graphs and transversals; Chapman and Hall Mathematics Series. MR 604173
  • [D] H. Dehling, private communication.
  • [F1] Robert Fox and Murad S. Taqqu, Noncentral limit theorems for quadratic forms in random variables having long-range dependence, Ann. Probab. 13 (1985), no. 2, 428–446. MR 781415
  • [F2] Robert Fox and Murad S. Taqqu, Central limit theorems for quadratic forms in random variables having long-range dependence, Probab. Theory Related Fields 74 (1987), no. 2, 213–240. MR 871252, 10.1007/BF00569990
  • [GS] Ulf Grenander and Gabor Szegö, Toeplitz forms and their applications, California Monographs in Mathematical Sciences, University of California Press, Berkeley-Los Angeles, 1958. MR 0094840
  • [G1] L. Giraitis and D. Surgailis, CLT and other limit theorems for functionals of Gaussian processes, Z. Wahrsch. Verw. Gebiete 70 (1985), no. 2, 191–212. MR 799146, 10.1007/BF02451428
  • [G2] L. Giraitis and D. Surgailis, Multivariate Appell polynomials and the central limit theorem, Dependence in probability and statistics (Oberwolfach, 1985) Progr. Probab. Statist., vol. 11, Birkhäuser Boston, Boston, MA, 1986, pp. 21–71. MR 899984
  • [K] Yitzhak Katznelson, An introduction to harmonic analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0248482
  • [LZ] J. H. Lowenstein and W. Zimmermann, The power counting theorem for Feynman integrals with massless propagators, Comm. Math. Phys. 44 (1975), no. 1, 73–86. MR 0411421
  • [LC] W. A. Light and E. W. Cheney, Approximation theory in tensor product spaces, Lecture Notes in Mathematics, vol. 1169, Springer-Verlag, Berlin, 1985. MR 817984
  • [M] Edward B. Manoukian, Renormalization, Pure and Applied Mathematics, vol. 106, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. MR 749231
  • [N] N. Nakanishi, Graph theory and Feynman integrals, Gordon and Breach Science Publishers, New York, 1971.
  • [Wg] Steven Weinberg, High-energy behavior in quantum field-theory, Phys. Rev. (2) 118 (1960), 838–849. MR 0116953
  • [W] D. J. A. Welsh, Matroid theory, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. L. M. S. Monographs, No. 8. MR 0427112

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26D15

Retrieve articles in all journals with MSC: 26D15

Additional Information

Keywords: Generalized Hölder inequality, power counting conditions, graph sums, polymatroid, bond matroid
Article copyright: © Copyright 1989 American Mathematical Society