Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Convergence to ends for random walks on the automorphism group of a tree


Authors: Donald I. Cartwright and P. M. Soardi
Journal: Proc. Amer. Math. Soc. 107 (1989), 817-823
MSC: Primary 60J50; Secondary 05C05, 43A05, 60J15
DOI: https://doi.org/10.1090/S0002-9939-1989-0984784-5
MathSciNet review: 984784
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mu $ be a probability on a free group $ \Gamma $ of rank $ r \geq 2$. Assume that $ \operatorname{Supp} \left( \mu \right)$ is not contained in a cyclic subgroup of $ \Gamma $. We show that if $ {\left( {{X_n}} \right)_{n \geq 0}}$ is the right random walk on $ \Gamma $ determined by $ \mu $, then with probability 1, $ {X_n}$ converges (in the natural sense) to an infinite reduced word. The space $ \Omega $ of infinite reduced words carries a unique probability $ \nu $ such that $ \left( {\Omega ,\nu } \right)$ is a frontier of $ \left( {\Gamma ,\mu } \right)$ in the sense of Furstenberg [10]. This result extends to the right random walk $ \left( {{X_n}} \right)$ determined by a probability $ \mu $ on the group $ G$ of automorphisms of an arbitrary infinite locally finite tree $ T$. Assuming that $ \operatorname{Supp} \left( \mu \right)$ is not contained in any amenable closed subgroup of $ G$, then with probability 1 there is an end $ \omega $ of $ T$ such that $ {X_n}\upsilon $ converges to $ \omega $ for each $ \upsilon \in T$. Our methods are principally drawn from [9] and [10].


References [Enhancements On Off] (What's this?)

  • [1] R. Azencott, Espaces de Poisson des groupes localement compacts, Lecture Notes in Mathematics 148, Springer-Verlag, Berlin, Heidelberg, New York, 1970. MR 0501376 (58:18748)
  • [2] L. Breiman, Probability, Addison Wesley, Reading, Massachusetts, 1968. MR 0229267 (37:4841)
  • [3] J. H. Carruth, J. A. Hildebrant and R. J. Koch, The theory of topological semigroups, Marcel Dekker, New York, Basel, 1983. MR 691307 (84g:22002)
  • [4] P. Cartier, Functions harmoniques sur un arbre, Symposia Math. 9 (1972), 203-270. MR 0353467 (50:5950)
  • [5] D. I. Cartwright and S. Sawyer, The Martin boundary for general isotropic random walks in a tree, manuscript.
  • [6] Y. Derriennic, Marche aléatoire sur le groupe libre et frontière de Martin, Z. Wahrscheinlichkeitstheorie 32 (1975), 261-276. MR 0388545 (52:9381)
  • [7] Y. Derriennic and Y. Guivarch, Théorème de renouvellement pour les groupes non moyennables, C. R. Acad. Sc. Paris Série A 277 (1973), 613-615. MR 0328990 (48:7332)
  • [8] E. B. Dynkin and M. B. Malyutov, Random walks on groups with a finite number of generators, Soviet Math. Dokl. 2 (1961), 399-402.
  • [9] H. Furstenberg, Non-commuting random products, Trans. Amer. Math. Soc. 108 (1963), 377-428. MR 0163345 (29:648)
  • [10] -, Random walks and discrete subgroups of Lie groups, in Advances in Probability and Related Topics, Vol. I, ed. Peter Ney, Marcel Dekker, New York, 1971, pp. 1-63. MR 0284569 (44:1794)
  • [11] V. A. Kaimanovich and A. M. Vershik, Random walks on discrete groups: boundary and entropy, Annals of Prob. 11 (1983), 457-490. MR 704539 (85d:60024)
  • [12] C. Nebbia, On the amenability and the Kunze-Stein property for groups acting on a tree, (to appear in Pacific J. Math.). MR 968619 (90f:43004)
  • [13] S. Sawyer and T. Steger, The rate of escape for anisotropic random walks in a tree, Probab. Th. Rel. Fields 76 (1987), 207-230. MR 906775 (89a:60165)
  • [14] J.-P. Serre, Trees, Springer-Verlag, Berlin, Heidelberg, New York, 1980. MR 607504 (82c:20083)
  • [15] V. I. Trofimov, Automorphism groups of graphs as topological objects, Math. Notes 38 (1985), 717-720.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60J50, 05C05, 43A05, 60J15

Retrieve articles in all journals with MSC: 60J50, 05C05, 43A05, 60J15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0984784-5
Keywords: Random walks, free groups, ends of trees, boundaries of groups
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society