Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

The Stieltjes moments problem for rapidly decreasing functions


Author: Antonio J. Duran
Journal: Proc. Amer. Math. Soc. 107 (1989), 731-741
MSC: Primary 44A60; Secondary 33A65, 44A10
MathSciNet review: 984787
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the following result: If $ {\left( {{a_n}} \right)_n}$ is a sequence of complex numbers, then there exists a $ {\mathcal{C}^\infty }$-function $ f$ such that $ f$ and all its derivatives are rapidly decreasing functions, $ f\left( t \right) = 0$ for $ t < 0$ and $ \int_0^{ + \infty } {{t^n}f\left( t \right)dt = {a_n}} $. We extend this result for a generalized Stieltjes moments problem. Also, we characterize the $ {C^\infty }$-functions $ f$ in $ \left( {0, + \infty } \right)$ such that $ f$ and all its derivatives are rapidly decreasing functions in $ \left( {0, + \infty } \right)$ and with null moments.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 44A60, 33A65, 44A10

Retrieve articles in all journals with MSC: 44A60, 33A65, 44A10


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1989-0984787-0
PII: S 0002-9939(1989)0984787-0
Keywords: Moments problem, rapidly decreasing functions
Article copyright: © Copyright 1989 American Mathematical Society