A NEW EXAMPLE IN K-THEORY OF LOOPSPACES

TAHSIN GHAZAL

(Communicated by Frederick R. Cohen)

Abstract. The "Eilenberg-Moore" type spectral sequences which connect $K^*(QX)$ and $K^*(X)$ have well-known bad properties, when, for example, $X = K(\mathbb{Z}/p, 2)$. This paper shows that the result can be as bad when X is a finite complex.

The "Eilenberg-Moore" type spectral sequences which connect $K^*(QX)$ and $K^*(X)$ have well-known bad properties, such as when $X = K(\mathbb{Z}/p, 2)$ [4]. The purpose of this note is to show that the spectral sequence properties can be just as bad when X is a finite complex. Specifically, we prove

Theorem 1. For any odd prime p, there is a simply connected finite complex X such that

(i) $\tilde{K}^*(X; \mathbb{Z}) = 0$ (integral K-theory)

(ii) $\tilde{K}^*(QX; \mathbb{Z})$ contains a direct summand isomorphic to \mathbb{Z}/p.

It follows (informally) that there is no way of deducing $K^*(QX; \mathbb{Z})$ from the limit of the Eilenberg-Moore spectral sequence with $E_2 = \text{Tor}_{K^*(X; \mathbb{Z})}(\mathbb{Z}, \mathbb{Z})$, even when X is finite.

The example X is a very obvious one; the cofibre of the Adams map [1] in a suitable dimension. We describe this space X and prove that it has trivial K-theory in §1; in §2 we show that its loopspace has nontrivial K-theory.

1. The space X

Let $p > 1$ be a prime and let $P^n(p)$ denote the Moore space $S^{n-1}U_p e^n$. In [1] J. F. Adams described stable maps

(1) $A: P^{n+2p-2}(p) \to P^n(p)$

(n large) such that A^* is an isomorphism in K-theory. We define $X(n, p)$ to be the cofibre of A:

(2) $X(n, p) = P^n(p)U_A C(P^{n+2p-2}(p))$.

Received by the editors August 25, 1988 and, in revised form, March 1, 1989.

Key words and phrases. Adams map, K-theory.

©1989 American Mathematical Society
0002-9939/89 $1.00 + .25$ per page

855
Lemma 1. \(\tilde{K}^*(X(n,p) ; \mathbb{Z}) = 0 \).

Proof. The proof follows immediately from the cofibration exact sequence.

Now choose \(n \) so that \(\tilde{K}^*(\Omega X ; \mathbb{Z}) \) is not 0. The construction is only possible when \(n \) has its minimum value \(n_0 \), since for \(n > n_0 \), \(X \) is a suspension \(\Sigma Y \), with \(\tilde{K}^*(Y ; \mathbb{Z}) = 0 \). By the theory of the James construction [5], \(\Omega X = \Omega \Sigma Y \) also has trivial \(K \)-theory in this case.

Cohen and Neisendorfer [3] have computed the minimum value for \(n \) to be 3. We therefore set \(X = X(3,p) = P^3(p)U_A(P^{2p+1}(p)) \). We have \(H^*(X ; \mathbb{Z}) \) given by

\[
\begin{align*}
H^3(X ; \mathbb{Z}) &= H^{2p+2}(X ; \mathbb{Z}) = \mathbb{Z}/p, \\
H^1(X ; \mathbb{Z}) &= 0 \quad \text{otherwise}.
\end{align*}
\]

(3)

2. The \(K \)-theory of \(\Omega X \)

Proving that the \(K \)-theory of \(\Omega X \) is nontrivial is simple. Using (3) and the transgression exact sequence of [6] gives

Lemma 2. \(H^1(\Omega X ; \mathbb{Z}) = 0; \quad H^2(\Omega X ; \mathbb{Z}) = \mathbb{Z}/p \).

But \(H^2(\Omega X ; \mathbb{Z}) \) is a direct summand in \(\tilde{K}^0(\Omega X ; \mathbb{Z}) \), as is well known. (The mapping \(K(\mathbb{Z} , 2) = BU(1) \rightarrow BU \) is split by the determinant map.) This completes the proof of Theorem 1.

We can prove the analogue to Theorem 1 for \(K \)-theory mod \(p \) using the same space \(X \); a careful use of the universal coefficient theorem [2] will provide a \(\mathbb{Z}/p \) summand in \(K^0(\Omega X ; \mathbb{Z}/p) \).

Of course the Adams maps are defined (in suitable degrees) if \(p \) is replaced by \(p' \):

\[
A_r : P^{n+2(p-1)p'-1}(p') \rightarrow P^n(p')
\]

If we know the exact level of desuspension of \(A_r \), we can expect a similar result for \(K \)-theory of the cofibre and its loop space.

References