Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A new example in $ K$-theory of loopspaces


Author: Tahsin Ghazal
Journal: Proc. Amer. Math. Soc. 107 (1989), 855-856
MSC: Primary 55N15; Secondary 19L20
DOI: https://doi.org/10.1090/S0002-9939-1989-0984790-0
MathSciNet review: 984790
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The "Eilenberg-Moore" type spectral sequences which connect $ {K^ * }(\Omega X)$ and $ {K^*}(X)$ have well-known bad properties, when, for example, $ X = K(\mathbb{Z}/p,2)$. This paper shows that the result can be as bad when $ X$ is a finite complex.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, On the groups $ J(X)$ IV, Topology 5 (1966), 21-71. MR 0198470 (33:6628)
  • [2] D. W. Anderson, Universal coefficient theorems for $ K$-theory, Unpublished (1963).
  • [3] F. R. Cohen and J. A. Neisendorfer, Note on desuspending the Adams map, Math. Proc. Cambridge Philos. Soc, 99 (1986), 59-64. MR 809498 (87d:55015)
  • [4] L. H. Hodgkin, The equivanant Künneth theorem in $ K$-theory, Lecture Notes in Math., no. 496, Springer, Berlin 1975, pp. 1-101. MR 0478156 (57:17645)
  • [5] I. M. James, Reduced product spaces, Ann. of Math. 62 (2) (1955), 170-197. MR 0073181 (17:396b)
  • [6] J. P. Serre, Homologie singulière des espaces fibres, Ann. of Math. 54 (2) (1951), 425-505. MR 0045386 (13:574g)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55N15, 19L20

Retrieve articles in all journals with MSC: 55N15, 19L20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0984790-0
Keywords: Adams map, $ K$-theory
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society