Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Complete Möbius strips minimally immersed in $ {\bf R}\sp 3$


Author: Tōru Ishihara
Journal: Proc. Amer. Math. Soc. 107 (1989), 803-806
MSC: Primary 53A10
DOI: https://doi.org/10.1090/S0002-9939-1989-0984797-3
MathSciNet review: 984797
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the present paper, we will determine all complete minimal immersions of a Möbius strip into $ {{\mathbf{R}}^3}$ with finite total curvature.


References [Enhancements On Off] (What's this?)

  • [1 A] A. de Barros, Complete nonorientable minimal surfaces in $ {{\mathbf{R}}^3}$ with total curvature $ - 10\pi $, preprint.
  • [2 M] E. Oliveira, Some new examples of nonorientable minimal surfaces, Proc. Amer. Math. Soc. 98 (1986), 629-635. MR 861765 (87m:53008)
  • [3 W] Meeks, The classification of complete minimal surfaces in $ {{\mathbf{R}}^3}$ with total curvature greater than $ - 8\pi $, Duke Math. J. 48 (1981), 523-535. MR 630583 (82k:53009)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53A10

Retrieve articles in all journals with MSC: 53A10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0984797-3
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society