Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Formation of singularities in compressible fluids in two-space dimensions


Author: M. A. Rammaha
Journal: Proc. Amer. Math. Soc. 107 (1989), 705-714
MSC: Primary 35L60; Secondary 35B05, 35Q10, 76N10
DOI: https://doi.org/10.1090/S0002-9939-1989-0984811-5
MathSciNet review: 984811
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Classical solutions to the two-dimensional Euler equations for a polytropic ideal fluid are considered. It is shown that any local $ {C^1}$-flow, regardless of the size of the initial disturbance, will develop singularities in finite-time provided the front of the initial disturbance satisfies certain conditions.


References [Enhancements On Off] (What's this?)

  • [1] R. Courant and D. Hilbert, Methods of mathematical physics, II, New York, Interscience, 1962.
  • [2] F. John, Formation of singularities in one-dimensional nonlinear wave propagation, Commun. Pure Appl. Math. 27 (1974), 377-405. MR 0369934 (51:6163)
  • [3] -, Blow-up of radial solutions of $ {u_{tt}} = {c^2}\left( {{u_t}} \right)\Delta u$ in three space dimensions, Mat. Aplic. Comp. 4 (1) (1985), 3-18. MR 808321 (87c:35114)
  • [4] T. Kato, The Cauchy problem for quasilinear symmetric systems, Arch. Rat. Mech. Anal. 58 (1975), 181-205. MR 0390516 (52:11341)
  • [5] S. Klainerman and A. Majda, Compressible and incompressible fluids, Commun. Pure Appl. Math. 35 (1982), 629-651. MR 668409 (84a:35264)
  • [6] T. P. Liu, The development of singularities in the nonlinear waves for quasi-linear hyperbolic partial differential equations, J. Differ. Equations 33 (1979), 92-111. MR 540819 (80g:35075)
  • [7] M. Rammaha, Finite-time blow-up for nonlinear wave equations in high dimensions, Commun. Partial Differ. Equations 12 (6) (1987), 677-700. MR 879355 (88f:35094)
  • [8] -, On the blowing up of solutions to nonlinear wave equations in two space dimensions, J. Reine Angew. Math. 391 (1988), 55-64. MR 961163 (90a:35009)
  • [9] T. Sideris, Formation of singularities of solutions to nonlinear hyperbolic equations, Arch. Ration. Mech. Anal. 86 (4) (1984), 369-381. MR 759769 (86d:35088)
  • [10] -, Global behavior of solutions to nonlinear wave equations in three space dimensions, Commun. Partial Differ. Equations 8 (12) (1983) 1291-1323. MR 711440 (85e:35081)
  • [11] -, Formation of singularities in three-dimensional compressible fluids, Commun. Math. Phys. 101 (1985), 475-485. MR 815196 (87d:35127)
  • [12] S. Ukai, The incompressible limit and the initial layer of the compressible Euler equation, J. Math. Kyoto Univ. 26 (2) (1986), 323-331. MR 849223 (87h:35279)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35L60, 35B05, 35Q10, 76N10

Retrieve articles in all journals with MSC: 35L60, 35B05, 35Q10, 76N10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0984811-5
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society