Formation of singularities in compressible fluids in two-space dimensions

Author:
M. A. Rammaha

Journal:
Proc. Amer. Math. Soc. **107** (1989), 705-714

MSC:
Primary 35L60; Secondary 35B05, 35Q10, 76N10

MathSciNet review:
984811

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Classical solutions to the two-dimensional Euler equations for a polytropic ideal fluid are considered. It is shown that any local -flow, regardless of the size of the initial disturbance, will develop singularities in finite-time provided the front of the initial disturbance satisfies certain conditions.

**[1]**R. Courant and D. Hilbert,*Methods of mathematical physics*, II, New York, Interscience, 1962.**[2]**Fritz John,*Formation of singularities in one-dimensional nonlinear wave propagation*, Comm. Pure Appl. Math.**27**(1974), 377–405. MR**0369934****[3]**F. John,*Blow-up of radial solutions of 𝑢_{𝑡𝑡}=𝑐²(𝑢_{𝑡})Δ𝑢 in three space dimensions*, Mat. Apl. Comput.**4**(1985), no. 1, 3–18 (English, with Portuguese summary). MR**808321****[4]**Tosio Kato,*The Cauchy problem for quasi-linear symmetric hyperbolic systems*, Arch. Rational Mech. Anal.**58**(1975), no. 3, 181–205. MR**0390516****[5]**Sergiu Klainerman and Andrew Majda,*Compressible and incompressible fluids*, Comm. Pure Appl. Math.**35**(1982), no. 5, 629–651. MR**668409**, 10.1002/cpa.3160350503**[6]**Tai Ping Liu,*Development of singularities in the nonlinear waves for quasilinear hyperbolic partial differential equations*, J. Differential Equations**33**(1979), no. 1, 92–111. MR**540819**, 10.1016/0022-0396(79)90082-2**[7]**M. A. Rammaha,*Finite-time blow-up for nonlinear wave equations in high dimensions*, Comm. Partial Differential Equations**12**(1987), no. 6, 677–700. MR**879355**, 10.1080/03605308708820506**[8]**M. A. Rammaha,*On the blowing up of solutions to nonlinear wave equations in two space dimensions*, J. Reine Angew. Math.**391**(1988), 55–64. MR**961163**, 10.1515/crll.1988.391.55**[9]**Thomas C. Sideris,*Formation of singularities in solutions to nonlinear hyperbolic equations*, Arch. Rational Mech. Anal.**86**(1984), no. 4, 369–381. MR**759769**, 10.1007/BF00280033**[10]**Thomas C. Sideris,*Global behavior of solutions to nonlinear wave equations in three dimensions*, Comm. Partial Differential Equations**8**(1983), no. 12, 1291–1323. MR**711440**, 10.1080/03605308308820304**[11]**Thomas C. Sideris,*Formation of singularities in three-dimensional compressible fluids*, Comm. Math. Phys.**101**(1985), no. 4, 475–485. MR**815196****[12]**Seiji Ukai,*The incompressible limit and the initial layer of the compressible Euler equation*, J. Math. Kyoto Univ.**26**(1986), no. 2, 323–331. MR**849223**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
35L60,
35B05,
35Q10,
76N10

Retrieve articles in all journals with MSC: 35L60, 35B05, 35Q10, 76N10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0984811-5

Article copyright:
© Copyright 1989
American Mathematical Society