Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Uniqueness of bounded harmonic functions

Authors: Marvin Ortel and Walter Schneider
Journal: Proc. Amer. Math. Soc. 107 (1989), 937-942
MSC: Primary 31A20; Secondary 31A15, 31A25
MathSciNet review: 961416
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove the following theorem: A bounded harmonic function is identically zero if it tends to zero at a certain rate along a set of radii of positive measure. In particular, this uniqueness theorem does not require that the function in question have smooth boundary values or restricted derivatives.

References [Enhancements On Off] (What's this?)

  • [B] A. Beurling, Etudes sur un problème de majoration, Thèse, Uppsala, 1930.
  • [N] Rolf Nevanlinna, Analytic functions, Translated from the second German edition by Phillip Emig. Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. MR 0279280
  • [P] I. I. Priwalow, Randeigenschaften analytischer Funktionen, Zweite, unter Redaktion von A. I. Markuschewitsch überarbeitete und ergänzte Auflage. Hochschulbücher für Mathematik, Bd. 25, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956 (German). MR 0083565

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 31A20, 31A15, 31A25

Retrieve articles in all journals with MSC: 31A20, 31A15, 31A25

Additional Information

Keywords: Bounded harmonic functions, radial limits, boundary value problems
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society