Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Second order elliptic equations with degenerate weight

Author: W. Allegretto
Journal: Proc. Amer. Math. Soc. 107 (1989), 989-998
MSC: Primary 35J10; Secondary 35P15, 47F05
MathSciNet review: 977929
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the eigenvalue problem: $ - \Delta u - qu = \lambda \omega u,u \in \dot{H}^{1,2}(\Omega )$, in a smooth bounded domain $ \Omega \subset {{\mathbf{R}}^n}$. We allow $ - \Delta - q$ to have negative spectrum and assume $ \omega \geq 0$ in $ \Omega ,\omega \equiv 0$ in a subdomain of $ \Omega $. Under suitable regularity conditions, we establish several results for the spectrum of this problem. In particular, we give: a min.max. formula for $ \lambda $; a precise estimate on the number of negative $ \lambda $; an estimate for the location of negative $ \lambda $. An example concludes the paper.

References [Enhancements On Off] (What's this?)

  • [1] W. Allegretto and A. Mingarelli, On the non-existence of positive solutions for a Schrödinger equation with an indefinite weight function, C.R. Math. Rep. Acad. Sci. Canada 8 (1986), 69-73. MR 827120 (87j:35154)
  • [2] -, Boundary problems of the second order with an indefinite weight function, preprint.
  • [3] P. Binding and P. Browne, Spectral properties of two parameter eigenvalue problems II, Proc. Royal Soc. Edinb. 106A (1987), 39-51. MR 899939 (88m:47036)
  • [4] R. Courant and D. Hilbert, Methods of mathematical physics, Vol. I, Interscience, New York, 1953. MR 0065391 (16:426a)
  • [5] W. N. Everitt, M. Kwong and A. Zettl, Oscillation of eigenfunctions of weighted regular SturmLiouville problems, J. London Math. Soc. 27 (1983), 106-120. MR 686509 (84g:34035)
  • [6] -, Differential operators and quadratic inequalities with a degenerate weight, J. Math. Anal. Appl. 98 (1984), 378-399. MR 730514 (85m:34036)
  • [7] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, 2nd Edition, Springer, Berlin/New York, 1983. MR 737190 (86c:35035)
  • [8] I.C. Gohberg and M. G. Krein, Theory and applications of Volterra operators in Hilbert space, Trans, of Math. Mono., Vol. 24, American Mathematical Society, 1970. MR 0264447 (41:9041)
  • [9] E. L. Ince, Ordinary differential equations, Dover, New York, 1956. MR 0010757 (6:65f)
  • [10] M. Reed and B. Simon, Methods of modern mathematical physics, Vol. IV, Academic Press, New York, 1978. MR 0493421 (58:12429c)
  • [11] F. Rellich, Perturbation theory of eigenvalue problems, Gordon and Breach, New York, 1969. MR 0240668 (39:2014)
  • [12] F. Reisz and B. Sz.-Nagy, Functional analysis, Ungar Publishing, New York, 1955. MR 0071727 (17:175i)
  • [13] S. L. Sobolev, Applications of functional analysis in mathematical physics, Trans, of Math. Mono., Vol. 7, American Mathematical Society, 1963. MR 0165337 (29:2624)
  • [14] R. Vyborny, Continuous dependence of eigenvalues on the domain, Lecture Sec. No. 42, Institute for Fluid Dynamics and Applied Mathematics, Univ. of Maryland, 1964.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35J10, 35P15, 47F05

Retrieve articles in all journals with MSC: 35J10, 35P15, 47F05

Additional Information

Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society