Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Second order elliptic equations with degenerate weight

Author: W. Allegretto
Journal: Proc. Amer. Math. Soc. 107 (1989), 989-998
MSC: Primary 35J10; Secondary 35P15, 47F05
MathSciNet review: 977929
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the eigenvalue problem: $ - \Delta u - qu = \lambda \omega u,u \in \dot{H}^{1,2}(\Omega )$, in a smooth bounded domain $ \Omega \subset {{\mathbf{R}}^n}$. We allow $ - \Delta - q$ to have negative spectrum and assume $ \omega \geq 0$ in $ \Omega ,\omega \equiv 0$ in a subdomain of $ \Omega $. Under suitable regularity conditions, we establish several results for the spectrum of this problem. In particular, we give: a min.max. formula for $ \lambda $; a precise estimate on the number of negative $ \lambda $; an estimate for the location of negative $ \lambda $. An example concludes the paper.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35J10, 35P15, 47F05

Retrieve articles in all journals with MSC: 35J10, 35P15, 47F05

Additional Information

PII: S 0002-9939(1989)0977929-4
Article copyright: © Copyright 1989 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia