Second order elliptic equations with degenerate weight

Author:
W. Allegretto

Journal:
Proc. Amer. Math. Soc. **107** (1989), 989-998

MSC:
Primary 35J10; Secondary 35P15, 47F05

DOI:
https://doi.org/10.1090/S0002-9939-1989-0977929-4

MathSciNet review:
977929

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the eigenvalue problem: , in a smooth bounded domain . We allow to have negative spectrum and assume in in a subdomain of . Under suitable regularity conditions, we establish several results for the spectrum of this problem. In particular, we give: a min.max. formula for ; a precise estimate on the number of negative ; an estimate for the location of negative . An example concludes the paper.

**[1]**Walter Allegretto and Angelo B. Mingarelli,*On the nonexistence of positive solutions for a Schrödinger equation with an indefinite weight-function*, C. R. Math. Rep. Acad. Sci. Canada**8**(1986), no. 1, 69–73. MR**827120****[2]**-,*Boundary problems of the second order with an indefinite weight function*, preprint.**[3]**Paul Binding and Patrick J. Browne,*Spectral properties of two-parameter eigenvalue problems. II*, Proc. Roy. Soc. Edinburgh Sect. A**106**(1987), no. 1-2, 39–51. MR**899939**, https://doi.org/10.1017/S0308210500018187**[4]**R. Courant and D. Hilbert,*Methods of mathematical physics. Vol. I*, Interscience Publishers, Inc., New York, N.Y., 1953. MR**0065391****[5]**W. N. Everitt, Man Kam Kwong, and A. Zettl,*Oscillation of eigenfunctions of weighted regular Sturm-Liouville problems*, J. London Math. Soc. (2)**27**(1983), no. 1, 106–120. MR**686509**, https://doi.org/10.1112/jlms/s2-27.1.106**[6]**W. N. Everitt, Man Kam Kwong, and A. Zettl,*Differential operators and quadratic inequalities with a degenerate weight*, J. Math. Anal. Appl.**98**(1984), no. 2, 378–399. MR**730514**, https://doi.org/10.1016/0022-247X(84)90256-7**[7]**David Gilbarg and Neil S. Trudinger,*Elliptic partial differential equations of second order*, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR**737190****[8]**I. C. Gohberg and M. G. Kreĭn,*Theory and applications of Volterra operators in Hilbert space*, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 24, American Mathematical Society, Providence, R.I., 1970. MR**0264447****[9]**E. L. Ince,*Ordinary Differential Equations*, Dover Publications, New York, 1944. MR**0010757****[10]**Michael Reed and Barry Simon,*Methods of modern mathematical physics. IV. Analysis of operators*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR**0493421****[11]**Franz Rellich,*Perturbation theory of eigenvalue problems*, Assisted by J. Berkowitz. With a preface by Jacob T. Schwartz, Gordon and Breach Science Publishers, New York-London-Paris, 1969. MR**0240668****[12]**Frigyes Riesz and Béla Sz.-Nagy,*Functional analysis*, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR**0071727****[13]**S. L. Sobolev,*Applications of functional analysis in mathematical physics*, Translated from the Russian by F. E. Browder. Translations of Mathematical Monographs, Vol. 7, American Mathematical Society, Providence, R.I., 1963. MR**0165337****[14]**R. Vyborny,*Continuous dependence of eigenvalues on the domain*, Lecture Sec. No. 42, Institute for Fluid Dynamics and Applied Mathematics, Univ. of Maryland, 1964.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
35J10,
35P15,
47F05

Retrieve articles in all journals with MSC: 35J10, 35P15, 47F05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1989-0977929-4

Article copyright:
© Copyright 1989
American Mathematical Society