Second order elliptic equations with degenerate weight
Author:
W. Allegretto
Journal:
Proc. Amer. Math. Soc. 107 (1989), 989998
MSC:
Primary 35J10; Secondary 35P15, 47F05
MathSciNet review:
977929
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We consider the eigenvalue problem: , in a smooth bounded domain . We allow to have negative spectrum and assume in in a subdomain of . Under suitable regularity conditions, we establish several results for the spectrum of this problem. In particular, we give: a min.max. formula for ; a precise estimate on the number of negative ; an estimate for the location of negative . An example concludes the paper.
 [1]
Walter
Allegretto and Angelo
B. Mingarelli, On the nonexistence of positive solutions for a
Schrödinger equation with an indefinite weightfunction, C. R.
Math. Rep. Acad. Sci. Canada 8 (1986), no. 1,
69–73. MR
827120 (87j:35154)
 [2]
, Boundary problems of the second order with an indefinite weight function, preprint.
 [3]
Paul
Binding and Patrick
J. Browne, Spectral properties of twoparameter eigenvalue
problems. II, Proc. Roy. Soc. Edinburgh Sect. A 106
(1987), no. 12, 39–51. MR 899939
(88m:47036), http://dx.doi.org/10.1017/S0308210500018187
 [4]
R.
Courant and D.
Hilbert, Methods of mathematical physics. Vol. I, Interscience
Publishers, Inc., New York, N.Y., 1953. MR 0065391
(16,426a)
 [5]
W.
N. Everitt, Man
Kam Kwong, and A.
Zettl, Oscillation of eigenfunctions of weighted regular
SturmLiouville problems, J. London Math. Soc. (2) 27
(1983), no. 1, 106–120. MR 686509
(84g:34035), http://dx.doi.org/10.1112/jlms/s227.1.106
 [6]
W.
N. Everitt, Man
Kam Kwong, and A.
Zettl, Differential operators and quadratic inequalities with a
degenerate weight, J. Math. Anal. Appl. 98 (1984),
no. 2, 378–399. MR 730514
(85m:34036), http://dx.doi.org/10.1016/0022247X(84)902567
 [7]
David
Gilbarg and Neil
S. Trudinger, Elliptic partial differential equations of second
order, 2nd ed., Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences], vol. 224,
SpringerVerlag, Berlin, 1983. MR 737190
(86c:35035)
 [8]
I.
C. Gohberg and M.
G. Kreĭn, Theory and applications of Volterra operators in
Hilbert space, Translated from the Russian by A. Feinstein.
Translations of Mathematical Monographs, Vol. 24, American Mathematical
Society, Providence, R.I., 1970. MR 0264447
(41 #9041)
 [9]
E.
L. Ince, Ordinary Differential Equations, Dover Publications,
New York, 1944. MR 0010757
(6,65f)
 [10]
Michael
Reed and Barry
Simon, Methods of modern mathematical physics. IV. Analysis of
operators, Academic Press [Harcourt Brace Jovanovich, Publishers], New
YorkLondon, 1978. MR 0493421
(58 #12429c)
 [11]
Franz
Rellich, Perturbation theory of eigenvalue problems, Assisted
by J. Berkowitz. With a preface by Jacob T. Schwartz, Gordon and Breach
Science Publishers, New YorkLondonParis, 1969. MR 0240668
(39 #2014)
 [12]
Frigyes
Riesz and Béla
Sz.Nagy, Functional analysis, Frederick Ungar Publishing Co.,
New York, 1955. Translated by Leo F. Boron. MR 0071727
(17,175i)
 [13]
S.
L. Sobolev, Applications of functional analysis in mathematical
physics, Translated from the Russian by F. E. Browder. Translations of
Mathematical Monographs, Vol. 7, American Mathematical Society, Providence,
R.I., 1963. MR
0165337 (29 #2624)
 [14]
R. Vyborny, Continuous dependence of eigenvalues on the domain, Lecture Sec. No. 42, Institute for Fluid Dynamics and Applied Mathematics, Univ. of Maryland, 1964.
 [1]
 W. Allegretto and A. Mingarelli, On the nonexistence of positive solutions for a Schrödinger equation with an indefinite weight function, C.R. Math. Rep. Acad. Sci. Canada 8 (1986), 6973. MR 827120 (87j:35154)
 [2]
 , Boundary problems of the second order with an indefinite weight function, preprint.
 [3]
 P. Binding and P. Browne, Spectral properties of two parameter eigenvalue problems II, Proc. Royal Soc. Edinb. 106A (1987), 3951. MR 899939 (88m:47036)
 [4]
 R. Courant and D. Hilbert, Methods of mathematical physics, Vol. I, Interscience, New York, 1953. MR 0065391 (16:426a)
 [5]
 W. N. Everitt, M. Kwong and A. Zettl, Oscillation of eigenfunctions of weighted regular SturmLiouville problems, J. London Math. Soc. 27 (1983), 106120. MR 686509 (84g:34035)
 [6]
 , Differential operators and quadratic inequalities with a degenerate weight, J. Math. Anal. Appl. 98 (1984), 378399. MR 730514 (85m:34036)
 [7]
 D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, 2nd Edition, Springer, Berlin/New York, 1983. MR 737190 (86c:35035)
 [8]
 I.C. Gohberg and M. G. Krein, Theory and applications of Volterra operators in Hilbert space, Trans, of Math. Mono., Vol. 24, American Mathematical Society, 1970. MR 0264447 (41:9041)
 [9]
 E. L. Ince, Ordinary differential equations, Dover, New York, 1956. MR 0010757 (6:65f)
 [10]
 M. Reed and B. Simon, Methods of modern mathematical physics, Vol. IV, Academic Press, New York, 1978. MR 0493421 (58:12429c)
 [11]
 F. Rellich, Perturbation theory of eigenvalue problems, Gordon and Breach, New York, 1969. MR 0240668 (39:2014)
 [12]
 F. Reisz and B. Sz.Nagy, Functional analysis, Ungar Publishing, New York, 1955. MR 0071727 (17:175i)
 [13]
 S. L. Sobolev, Applications of functional analysis in mathematical physics, Trans, of Math. Mono., Vol. 7, American Mathematical Society, 1963. MR 0165337 (29:2624)
 [14]
 R. Vyborny, Continuous dependence of eigenvalues on the domain, Lecture Sec. No. 42, Institute for Fluid Dynamics and Applied Mathematics, Univ. of Maryland, 1964.
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
35J10,
35P15,
47F05
Retrieve articles in all journals
with MSC:
35J10,
35P15,
47F05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198909779294
PII:
S 00029939(1989)09779294
Article copyright:
© Copyright 1989
American Mathematical Society
