Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Adherent compact spaces


Author: Robert L. Krystock
Journal: Proc. Amer. Math. Soc. 107 (1989), 1117-1125
MSC: Primary 54D25
DOI: https://doi.org/10.1090/S0002-9939-1989-0991699-5
MathSciNet review: 991699
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A new class of $ H$-closed spaces, herein referred to as the class of adherent compact spaces, is introduced--and shown to be properly contained in the class of $ C$-compact spaces. It is also shown, using a construction of Goss and Viglino, that these spaces need not be seminormal.


References [Enhancements On Off] (What's this?)

  • [1] A. Bella, On the number of $ H$-sets in a Hausdorff space, (Italian Summary) Rend. Acad. Naz. Sci. XL Mem. Mat. 10 (5) (1986), no. 1, 251-254. MR 879113 (88b:54009)
  • [2] D. Burke and R. Hodel, The number of compact subsets of a topological space, Proc. Amer. Math. Soc. 58 (1976), 363-368. MR 0418014 (54:6058)
  • [3] S. Fomin, Extensions of topological spaces, Ann. Math. 44 (1943), 471-480. MR 0008686 (5:45g)
  • [4] G. Goss and G. Viglino, Some topological properties weaker than compactness, Pacific J. Math. 35 (1970), 635-638. MR 0279770 (43:5491)
  • [5] -, $ C$-compact and functionally compact spaces, Pacific J. Math. 37 (1971), 677-681. MR 0305347 (46:4477)
  • [6] M. Katĕtov, Über $ H$-abgeschlossen und bikompact Räume, Časopis Pĕst. Mat. Fys. 69 (1940), 36-49.
  • [7] R. Krystock, On $ H$-sets and open filter adherences, Canad. Math. Bull. 31 (1988), 37-44. MR 932611 (89e:54041)
  • [8] C.-T. Liu, Absolutely closed spaces, Trans. Amer. Math. Soc. 130 (1968), 86-104. MR 0219024 (36:2107)
  • [9] J. Porter and M. Tikoo, On Katĕtov spaces, 1988 Spring Topology Conference, University of Florida.
  • [10] M. H. Stone, Applications of the theory of Boolean rings to General Topology, Trans. Amer. Math. Soc. 41 (1937), 375-481. MR 1501905
  • [11] G. Viglino, $ C$-compact spaces, Duke J. Math. 36 (1969), 761-764. MR 0248749 (40:2000)
  • [12] -, Seminormal and $ C$-compact spaces, Duke J. Math. 38 (1971), 57-61. MR 0271908 (42:6789)
  • [13] S. Willard, General Topology, Addison-Wesley, Reading, Massachusetts, 1970. MR 0264581 (41:9173)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D25

Retrieve articles in all journals with MSC: 54D25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1989-0991699-5
Keywords: $ H$-closed, $ H$-set, $ C$-compact, seminormal, open filter adherence
Article copyright: © Copyright 1989 American Mathematical Society

American Mathematical Society